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“And among His Signs is the creation of the heavens and the earth and the 

diversity of your languages and colours. Indeed, in that are Signs for those of 

knowledge.” 

        The Quran 30:22
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Summary 

Magnetic resonance imaging (MRI) -based morphometry is one of the most promising 

methods for non-invasive detection learning purposes plastic brain areas in the human 

field. The approach is based on the structure-function relationship: for every functional 

change there is a structural change, and vice versa. The structural changes in contrast to 

the functional changes are generally slightly delayed and significantly prolonged. 

Plastic areas can therefore be detected by MRI also at rest (in the absence of active 

learning process) and independent of acute brain activity over time. However, the exact 

nature of cellular processes underlying learning induced GM swelling is unknown. 

Studies with adult animals have demonstrated learning-related transient swelling of 

astrocytes and explaining the same pattern as observed in learning associated transient 

GM changes seen by MRI. On this basis, we hypothesized astrocytic enlargement as a 

major underlie mechanism to produce these GM volume changes. To test this 

hypothesis, we combined monocular deprivation (MD) based perceptual learning with 

longitudinal tracking of GM macro-structure changes in-vivo by MRI and deformation-

based morphometry (DBM) accompanied by microscopic analyses of astrocytic and 

neuronal features in albino Wistar rats.  

MD resulted in enhanced sensitivity of the optokinetic response (OKR) of the 

undeprived eye that was monitored using an optometer. To search for the areas of the 

brain mainly involved in this sensory adaptation, T2-weighted brain magnetic resonance 

images were acquired longitudinally at baseline and 3, 7 and 10 days following MD 

(male Wistar rats, 2 months) and processed by DBM. The changes in astrocytic 

morphology, neuronal activity, synaptic plasticity, spine pool and genesis of neurons, 

glia as well as blood vessels were analysed by using immunohistochemistry (GFAP, 

Arc, S100ß, BrdU) and Golgi impregnation approaches. 

We observed that over a period of 10d, MD enhanced the functioning of the un-

deprived eye that was monitored by measuring the OKR sensitivity (in terms of visual 

acuity [VA] and contrast sensitivity). The OKR response of the undeprived eye 

increased rapidly during the first 3 days of MD and stabilized around day 8. Temporal 

volume changes were observed in the visual cortex, lateral entorhinal cortex (LEnt) and 

cerebellum. The visual areas showed the initial swelling followed by the late 

shrinkages. In cerebellum, a delayed late swelling was observed. However, the best 
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correlation of the learning curve (increase in VA/day) was found with the time course of 

volume changes in LEnt that transiently swelled. We selected LEnt for elucidating the 

cellular substrates of GM volumetric changes. Using cross-sectional microscopic 

analyses, we observed an elevated Arc expression (immunohistochemistry), an 

enhanced spine pool (both immatured and matured spines) (Golgi impregnation) and 

significantly enlarged but morphologically simple astrocytes (immunohistochemistry 

with GFAP) during GM swelling at the 3
rd

 day of MD that was further accompanied by 

a reduced density of astrocytes and newly born nuclei. The swelling in LEnt was 

reversed towards the baseline until the 10
th

 day of MD. The Arc expression, density and 

hypertrophy of astrocytes also reversed to baseline along with GM but the spine pool of 

matured spines persisted. Besides, we observed that the volume changes in astrocytes 

occurred parallel to GM and explained 60% contribution, signifying astrocytic 

hypertrophy as the main underlie factor for the morphometry based GM swelling.  

Moreover, we did not see any increase in the density of newly born nuclei and 

astrocytes suggesting, that neuronal, glial as well as angio-genesis did not contribute in 

the DBM based swelling. Therefore, by showing a significant correlation between Arc 

expression, astrocytic enlargement, and DBM signal in the entorhinal cortex, these 

results fill the tremendous gap in our current understanding of the cellular substrates of 

morphometry based structural changes. Overall our study showed glial hypertrophy as 

the major cellular mechanism underlying these structural changes. Future studies are 

needed to analyze the reason of astrocytic enlargement as well as demonstrate the 

results of this study, is lateral entorhinal cortex crucially involved in the processing of 

visual signals. 
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Zusammenfassung 

Magnetresonanztomographie (MRT)-basierte Morphometrie ist eine der 

aussichtsvollsten Methoden zur nicht-invasiven Detektion lernrelevanter plastischer 

Hirnareale im humanen Bereich. Die Herangehensweise basiert auf dem Struktur-

Funktions-Zusammenhang: jede funktionelle Veränderung geht mit einer strukturellen 

Veränderung einher und umgekehrt. Dabei sind die Strukturveränderungen im Gegensatz 

zu den funktionellen Veränderungen generell leicht zeitverzögert und deutlich 

langanhaltender. Plastische Areale können daher mittels MRT auch in Ruhephasen 

außerhalb des aktiven Lernprozesses und unabhängig von akuter Hirnaktivität im 

Zeitverlauf detektiert werden. Es ist derzeitig jedoch unklar, auf welchen zellulären 

Prozessen diese makroskopischen Strukturveränderungen basieren. Ältere 

tierexperimentelle Studien zeigten lernbedingte Schwellungen der Astrozyten. Die hohe 

Anzahl der Astrozyten und das Ausmaß deren Schwellung machen einen direkten 

Zusammenhang mit den MRT-basierten Signalen sehr wahrscheinlich. Die hier vorgelegte 

Studie fokussiert daher auf die Detektion makroskopisch plastischer Hirnareale während 

„visual-perception learning“  und auf die Analyse der zugrunde liegenden zellulären 

Prozesse auf mikroskopischer Ebene. 

Als Lernmodell fungierte der Verschluss eines Auges („monocular deprivation“, MD) 

bei jungen adulten Wistar-Ratten. Optometrische Messungen zeigten eine sprunghafte 

Verbesserung der Sehschärfe des offenen Auges in den ersten 3 Tagen nach MD  und 

eine Stabilisierung der erhöhten Sehschärfe nach 8 Tagen („visual perception learning“). 

Temporäre zerebrale Strukturveränderungen wurden an repetitiv generierten T2-

gewichteten MRT-Aufnahmen mittels Deformations-basierter Morphometrie 3, 7 und 

10 Tage nach MD detektiert. Visuelle Areale zeigten dabei initiale Schwellungen 

gefolgt von späten Schrumpfungen. Im Zerebellum zeigte sich eine verzögerte späte 

Schwellung. Die beste Korrelation mit der Lernkurve fand sich jedoch im lateralen 

entorhinalen Kortex, welcher initial anschwillt und sein Volumen nach Stabilisierung 

der erhöhten Sehschärfe re-normalisiert. Cross-sektionale mikroskopische Analysen 

zeigten hier eine transient erhöhte Expression des Plastizitäts-Markers Arc 

(Immunhistochemie). Weiterhin zeigte sich ein transient erhöhter Spine-Pool (Golgi-

Impregnation) wobei initial vornehmlich die Anzahl unreifer Spines zunimmt. Das 

Ganze ging mit einer territorialen Vergrößerung und Hypertrophie der Astrozyten  

einher (Golgi-Impregnation) wobei deren Zytoskelett  degradiert (GFAP-
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Immunhistochemie). Als Ausdruck einer transienten Gewebeschwellung nahm die 

Zelldichte transient ab. Wir konnten keine Bildung neuer Zellen detektieren (BrdU-

Labeling). Nach Stabilisierung der erhöhten Sehschärfe und Normalisierung des 

Kortexvolumens  re-normalisierte sich auch die Dichte und das Volumen der 

Astrozyten. Demgegenüber war ein leicht erhöhter Pool stabiler Spines persistierend. 

Finale Modellrechnungen ergaben, dass die Hypertrophie der Astrozyten rund 60 % der 

makroskopischen MRT-basierten Gewebeschwellung erklärt. 

Die hier vorgelegte Arbeit belegt somit erstmals eine Schlüsselposition der Astrozyten 

bei der Generierung lernbedingter lokaler Schwellungen des Gehirns und unterstreicht 

deren Signifikanz bei Lernprozessen. Weitere Studien sind erforderlich, um den Grund 

der Astrozytenschwellung zu analysieren. Weiterhin belegen die Ergebnisse dieser 

Studie, dass der laterale entorhinale Kortex entscheidend an der Verarbeitung visueller 

Signale beteiligt ist. 
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1. Introduction 

According to the Symmorphosis concept, living organisms are thought to be 

designed economically and their structural design is matched to functional demand 

(Weibel et al., 1991) even body organs of individual members of the same species 

get modified according to their usage.  For instance, the brain regions which are 

extensively used grow enlarged over time that can be observed using magnetic 

resonance imaging (MRI). For example, hippocampus is considered to be involved in 

the spatial navigation and it was shown that London cab drivers who needed to often 

navigate unusual routs, had larger posterior hippocampus relative to controls from 

the general population (Maguire et al., 2000) and to London bus drivers matched for 

stress levels and driving experience (Maguire et al., 2006). Similarly, the 

professional musicians who extensively learned and practiced complex motor and 

auditory skills since childhood and throughout their career showed an increase in the 

gray matter (GM) volume in the motor, auditory, and visual–spatial brain regions 

when compared with amateur musicians and non-musicians (Gaser and Schlaug, 

2003). Similarly, GM changes were also found in correlation with professional 

experience in mathematicians (Aydin et al., 2007), with second-language proficiency 

(Mechelli et al., 2004) and meditators (Luders et al., 2009). But this use dependant 

enlargement of a particular region involved in the specific function of interest seems 

to appear over a longer period of practicing in contrast to learning associated 

enlargements that appear just 7 days after starting learning (Driemeyer et al., 2008). 

However, cross-sectional studies cannot provide any causal evidence for the 

learning-associated structural plasticity in the adult human brain. 

Learning is a highly dynamic process and there is an overwhelming evidence to 

indicate that for each new learning event, there is some required and sufficient 

change in the nervous system that supports learning (Cooper, 2005; Hebb, 1949; 

Kandel, 2001). However, longitudinal studies with learning have shown that learning 

associated GM swelling  is  transient in nature (Boyke et al., 2008; Draganski et al., 

2004; Draganski et al., 2006; Driemeyer et al., 2008; Taubert et al., 2010). Draganski 

et al. (2004) found that learning a complex visuomotor task (juggling) for a period of 

3 months during which the participants had learned to sustain a three-ball cascade for 

at least a minute, induced task-specific transient GM changes in the medial temporal 
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visual area (also known as V5). No changes were observed in the control group that 

did not engage in the juggling. The extent of these GM changes in the jugglers 

reduced during a subsequent 3-month period in which they did not practice juggling. 

To analyze the time course of these volume changes the same experiment was 

repeated with another young cohort (Driemeyer et al., 2008), but with shorter 

scanning intervals. They observed similar changes in V5 just after 7 days of juggling 

practice. Interestingly, the observed changes were larger in the initial learning phase 

than during continued training.  The former two studies involved students in their 

early twenties; Boyke et al.  (2008) repeated the experiments with an elderly cohort, 

revealing the same structural neuroplasticity, although attenuated by a lower juggling 

performance of this group. Moreover, temporal structural GM changes in the 

sensorimotor related regions and prefrontal cortex have been observed just after 90 

minutes of practicing (distributed over 2 weeks) of a complex balancing task 

(Taubert et al., 2010). Interestingly, the structural changes in sensorimotor related 

regions were highly transient and started disappearing until the 5
th

 week of training 

(after 360 minutes of practice) while the structural changes in the prefrontal cortex 

were continuously increased during 6 weeks (540 minutes) of training. This distinct 

temporal dynamics of structural GM changes indicated that learning is a complex 

brain function operating at different time scales in different networks of the brain.  

Additionally, these results indicate that functionally relevant structural brain 

alterations can be induced by relatively brief periods of learning. Therefore, there is a 

need of employing a non-invasive longitudinal approach for the detailed and precise 

characterization of the GM changes over the entire period of learning. Morphometric 

investigations using high-resolution MRI is a promising means to investigate the 

structure–function relations characteristic of the brain for plasticity associated 

learning processes (May, 2011). 

MRI depends on the absorbance specificity of anatomical nuclei for the 

electromagnetic radiation of a specific frequency dependent upon the magnetic field 

strength they experience and images are then created on the basis of the three-

dimensional distribution of these nuclei (Mietchen and Gaser, 2009). Morphometry 

based approaches like deformation based morphometry (DBM) can be employed to 

analyze MRI scans.  The principle of DBM is to warp the second scan to the baseline 

scan by introducing high-dimensional deformations. Next, the differences between 



 Introduction 

3 

 

both images are encoded in the deformations applied for the warp. These 

deformations can then be used to calculate volume changes by using non-linear 

algorithms (Gaser et al., 2001). In contrast to other morphometry approaches, DBM 

allows the detection of the structural differences independent of sharp tissue borders 

(Gaser et al., 2012).  

                                                                                

Besides in human, MRI based morphometry has been employed to analyze learning 

associated structural plasticity in animals. Quallo et al. (2009) analyzed the volume 

changes in the brain of adult macaque monkeys by using structural MR images 

collected before (2 measurements), during (3 measurements), and after (1 

measurement) learning to use a rake to retrieve food. Monkeys received intensive 

Fig. 1: Steps of analysis in deformation.  

An example is shown for a single subject in one axial slice. The single object 

brain (image a) has been corrected for orientation and overall size to the 

template brain (c). Nonlinear normalization removes most of the anatomical 

differences between the two brains by introducing local deformations to the 

object brain, which then (b) looks as similar as possible to the template. Note 

that these slices only represent two-dimensional information, whereas the 

method actually works in three dimensions. Image (e) shows the deformations 

applied to the object brain by a deformed grid and a magnification of the 

ventricles is displayed in (d). Analysis for DBM can be either multivariate using 

these x-y-z displacements of the entire 3-D deformation field or univariate using 

the local Jacobian determinant as a derivative of the field (f) (Gaser et al., 2001).  
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training each day over a period of 21 days. The learning-related changes were found 

in the right superior temporal sulcus and secondary somatosensory area.  It has been  

found recently that five days of Morris water maze training (six trials per day) in 

mice resulted in the expansion of regional GM volume (Lerch et al., 2011).  

Currently, the exact nature of cellular processes underlying the learning associated 

transient structural changes in the GM of the adult brain is not known. Based on the 

animal studies (Lerch et al., 2011) it is reasonable to assume that structural brain 

alterations are the consequences of multiple factors such as an increase in cell size, 

neural and glial genesis as well as spine density (May et al., 2007). Studies involving 

different learning paradigms have shown the rapid alterations in neurogenesis (Kee et 

al., 2007), synapse morphology and dendritic spine numbers (Fu and Zuo, 2011), 

astrocyte morphology  (Kleim et al., 2007; Viola et al., 2009) and a change in the 

neuronal activity pattern(Carpenter-Hyland et al., 2010; Okuno, 2011). 

Neurogenesis 

The hippocampal formation produces new neurons throughout adulthood in many 

vertebrates, from birds to primates (Barnea and Nottebohm, 1994; Bayer, 1982; 

Gould et al., 1997; Kempermann et al., 1997). It is hypothesized that these newly 

synthesized neurons are involved in the learning and memory (Barnea and 

Nottebohm, 1994; Gould et al., 1999b). Neurogenesis was found to be enhanced 

during environmental enrichment (Kempermann et al., 1997; Nilsson et al., 1999), 

spatial learning (Barnea and Nottebohm, 1994; Kee et al., 2007; Kempermann and 

Gage, 2002) and exercise (van Praag et al., 1999). However,  Gould et al. (1999a)  

have shown that neurogenesis only contributes in the hippocampal dependent 

learning task. 

Spine density 

Spines encompass the postsynaptic portion of glutamatergic synapses and have 

highly diverse structures (Kasai et al., 2010). The cytoskeleton of dendritic-spines is 

composed of the actin filaments which are highly motile and serve as a fundamental 

mechanism for plasticity. Spines are the major sites for structural plasticity of 

excitatory neuronal circuits. A typical spine consists of the bulby head and thin neck. 

Spines originate from small protrusions and filopodia on dendrites (Knott et al., 

2006; Nagerl et al., 2007; Ziv and Smith, 1996). The generation of these protrusions 
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and filopodia may be influenced by activity (Matsumoto-Miyai et al., 2009; Richards 

et al., 2005) however, the process of spine generation tends to be spontaneous and 

pseudo-random, unlike the process of activity-dependent spine enlargement, which is 

synapse-specific (Kasai et al., 2010).  Newly generated spines are small while older 

spines tend to be large (Hofer et al., 2009; Yasumatsu et al., 2008; Zito et al., 2009). 

The spine head volume varies over a wide range (0.005-1µm
3
) and reflects the 

strength of the synapse. The expression level of functional postsynaptic AMPA 

receptors is proportional to the spine-head volume (Kasai et al., 2010). The spine-

head enlargement or shrinkage (or elimination) can be induced by certain patterns of 

repetitive stimulation. This volume change accompanies a long-term functional 

plasticity of the glutamatergic synaptic transmission, including long-term 

potentiation (LTP) and long-term depression (LTD) (Lang et al., 2004; Okamoto et 

al., 2004; Zhou et al., 2004). Thus, newly generated spines are small and represent 

“silent synapses” that are the potential sites for LTP and enlargement. This activity 

dependent enlargement of stimulated spines is rapid and occurs at the level of single 

spines and represents the formation of a new functional connection with fast AMPA 

receptors. Hence, a newly generated spine, the physical embodiment of a ‘silent 

synapse,’ works as a seed for such a connection (Kasai et al., 2010). Unlike spine 

enlargement, which occurs over a short time period, activity induced spine 

generation occurs 0.5–1 hour after stimulation (Engert and Bonhoeffer, 1999; 

Maletic-Savatic et al., 1999; Nagerl et al., 2004). 

Studies with animals have shown that learning is associated with an increase in 

synapse and spine density. Synaptogenesis and associated changes in the dendritic 

spines can be formed over the periods of minutes to hours (Fu and Zuo, 2011; 

Holtmaat and Svoboda, 2009; Johansen-Berg et al., 2012). A large body of literature 

has shown that environmental enrichment can also increase the number of synapses 

and dendritic spines per neuron in adult animals (Briones et al., 2004; Jones et al., 

1997; Kozorovitskiy et al., 2005). Specific forms of training like motor skill learning 

induces increase in synapse number  in higher-order brain regions involved in motor 

learning, such as motor cortex (Kleim et al., 2002; Kleim et al., 1996) and 

cerebellum (Anderson et al., 1994; Black et al., 1990; Kleim et al., 1998; Kleim et 

al., 1997). Recently, Keifer et al. (2015) claimed that  increases in the dendritic spine 

density may partially explained the learning-induced GM structural changes.  
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Astrocytes 

Astrocytes are the most numerous subtypes of glial cells within the central nervous 

system (CNS) and it appears that the ratio of astrocytes to neurons increases with 

increasing complexity of the CNS. The term astrocyte was introduced by Lenhossek 

(1893) to describe the star-shaped neuroglial cells (Jacobson, 1993). The cell body of 

a typical astrocyte accounts for only 2% of its total volume whilst the larger cell 

processes constitute 58%.  The very fine thin processes which account for 40% of the 

cell volume are highly mobile (Hirrlinger et al., 2004). The cytoskeleton of an 

astrocyte is composed of intermediate filaments, microtubules and microfilaments 

(Haseleu et al., 2013). Three intermediate filament proteins may be found in the 

astrocytes: nestin, vimentin, and glial fibrillary acidic protein (GFAP). Nestin and 

vimentin are main intermediate filament proteins in the immature astroglial cells, 

whereas the maturing and adult astrocytes contain vimentin and GFAP (Eliasson et 

al., 1999a). Intermediate filaments are present only in the cell body and larger 

cellular processes but absent in the fine processes (Theodosis et al., 2008), where 

microfilaments (actin) mainly build up the cytoskeleton (Haseleu et al., 2013). 

Astrocytes are responsible for maintaining potassium (K
+
) homeostasis during the 

neuronal firing. A brief increase in the neuronal activity results in a transient increase 

in K
+
 efflux from the neuron to the extra cellular space (ECS) (Ballanyi et al., 1987; 

Dietzel et al., 1989; Macvicar et al., 2002). Effective clearance of K
+
 is essential for 

normal brain function otherwise it will enhance neuronal excitability and increase the 

probability of epileptic episodes and major sink of excess ECS-K
+
 is the surrounding 

astrocytes (Lux et al., 1986; Somjen, 2004). Additionally, astrocytes are considered 

the essential partners in the synapse formation, synaptic transmission, and plasticity 

(Eroglu and Barres, 2010). Astrocytes secrete synaptogenic molecule such as 

apolipoprotein E (Goritz et al., 2005; Mauch et al., 2001), thrombospondins 

(Christopherson et al., 2005; Risher and Eroglu, 2012) and hevin (Kucukdereli et al., 

2011) that instruct the synapse formation and development (Clarke and Barres, 

2013). But these synapses are silent (lacking AMPA receptors) and to convert the 

silent synapses into functional synapses, astrocytes further secrete glypicans (Allen et 

al., 2012). Several studies have suggested complementary experience-driven changes 

in the glial and synaptic morphology.  For instance, the housing of rats in a complex 

environment resulted in an increase in synapse number (Briones et al., 2004) that was 

further found to be associated with glial cell proliferation(Altman and Das, 1964), 
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increased surface density of GFAP positive astrocytic processes (Jones et al., 1996; 

Sirevaag and Greenough, 1991) and increased astrocytic ensheathing of synapses 

(Jones and Greenough, 1996).  Using a motor learning paradigm Anderson and 

colleagues (1994) demonstrated that the increased synapse number was accompanied 

by a proportional increase in the volume of astrocyte per Purkinje cell,  that persisted 

only during the learning period (Kleim et al., 2007). Further, an enhanced complexity 

in the astrocytic morphology was observed in mice following 8 weeks of housing in 

enriched cages (Viola et al., 2009).  Astrocytes are also considered to be involved in 

the elimination of neuronal debris and synapses. Phagocytosis by astrocytes has been 

reported in response to glioma (Lantos, 1974), trauma (al-Ali and al-Hussain, 1996; 

Bechmann and Nitsch, 1997) and during the developmental axon death (Berbel and 

Innocenti, 1988).   

Change in neuronal activity pattern 

 The capacity of neural networks to store and utilize the new experience and learning 

associated information depends on the pattern of neuronal activity. Learning and 

behavior associated studies have shown increased neuronal activity in learning 

relevant areas as assessed by the expression of the immediate-early gene Arc.  Arc  

stands for activity-regulated cytoskeleton-associated protein, also termed as Arg 3.1 

(Okuno, 2011) whose  mRNA is rapidly transcribed and targeted to the dendrites of 

neurons as they engage in the information processing and storage (Gusev et al., 

2005).  Arc is a dual marker and its expression is measured to assess the enhanced 

neuronal activation (Guzowski et al., 1999) and synaptic plasticity (Gao et al., 2010; 

Hayashi et al., 2012; Shepherd et al., 2006). In rats and mice, Arc mRNA and protein 

induction has been observed in the specific brain areas during exploration of new 

environments (Guzowski et al., 1999; Ramirez-Amaya et al., 2005), performance of 

the behavioural tasks that induced the formation of new spatial memory, fear-

conditioning memory (Barot et al., 2009) and olfactory memory (Desgranges et al., 

2010) as well as several types of operant learning (Carpenter-Hyland et al., 2010; 

Guzowski et al., 2001; Kelly and Deadwyler, 2003; Rapanelli et al., 2010). 

 Hypothesis of the study 

The underlying GM changes may be heterogeneous depending on the factors such as 

time after the onset of learning, its consequent temporal dynamics (reversible or 

permanent) and on the brain regions involved. For Instance, the medical students 
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memorizing extensively for 3 months for an intermediate exam were found to exhibit 

bilaterally increased GM volume in the hippocampus (Draganski et al., 2006), a brain 

region where neurogenesis takes place in adults (Kempermann et al., 1997) while in 

learning-associated studies where GM changes were seen just after a week of 

training in the cortex, neurogenesis as a promising cellular correlate seems 

suspicious because it might take up months for the stem cells to differentiate into the 

neurons (Cummings et al., 2005). Instead, the rapidly-evolving structural brain 

alterations are more likely to be  related to the fast adjusting neural systems, such as 

spine and synapse turnover (Holtmaat et al., 2005; Lendvai et al., 2000; Xu et al., 

2009) and morphological changes in the astrocytes (Kleim et al., 2007).  To support 

this assumption, it was demonstrated that new dendritic spines can evolve within one 

hour after learning (Engert and Bonhoeffer, 1999; Maletic-Savatic et al., 1999; 

Nagerl et al., 2004). Recently, Keifer et al. (2015) described that increase in the 

dendritic spine density may partially explain the learning-induced GM structural 

change.  Additionally, the morphological changes in astrocytes also seem a 

promising cellular correlate as astrocytes show substantial volume changes within 

seconds (Ostby et al., 2009) while neurons maintained their volume when GM 

swelled and shrank (Andrew et al., 2007). Kleim et al. (2007) reported that 3-4 

month-old rats subjected to acrobatic learning showed the hypertrophy of astrocytes 

that only persisted during the period of learning explaining the same pattern as 

observed in the learning associated transient GM changes seen by MRI-morphometry 

(Boyke et al., 2008; Draganski et al., 2004; Driemeyer et al., 2008). On the basis of 

this correlation, we hypothesized astrocytic enlargement as a major underlie factor to 

produce the learning associated GM volume expansion.
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2. Aims of study 

Learning induces the transient GM structural plasticity that persists only during the 

period of learning and can be detected by using MRI-morphometric approaches. 

However, to date the cellular underpinnings of learning associated transient 

macrostructural plasticity in the GM of adult brain are enigmatic. The experiments 

with rats have shown transient hypertrophy of astrocytes during acrobatic learning 

(Kleim et al., 2007), explaining the same pattern as observed in learning associated 

transient GM changes seen by MRI (Draganski et al., 2004; Draganski et al., 2006; 

Driemeyer et al., 2008). On the basis of this correlation, we hypothesized astrocytic 

enlargement as a major underlie mechanism to produce learning associated GM 

volume changes.  To check this hypothesis we have performed a study by combining 

the monocular deprivation (MD) based perceptual learning with longitudinal MRI 

measurements complemented by microscopic analyses. 

Monocular deprivation (MD) is a highly acceptable experimental model to study the 

neuroplasticity (Wiesel and Hubel, 1965) that leads to visual perceptual learning to 

adapt with monocular vision. Perceptual learning is defined as an increase in the 

ability to extract information from the environment (Gibson, 1969) and following 

MD represented by enhancement of the optokinetic response (OKR) sensitivity 

(measured as visual acuity [VA] and contrast sensitivity] threshold through the 

undeprived eye. The OKR sensitivity can be longitudinally monitored by using a 

visual optometer (Greifzu et al., 2011; Lehmann and Löwel 2008; Prusky et al., 

2006) 

The main aims of our study are as follows: 

1. Establishment of strategies firstly to induce the perceptual learning associated 

plasticity in the brain using MD and secondly to longitudinally detect the 

complete profile of this plasticity using MRI and DBM analysis. 

2. Cross-sectional analyses to explicate the cellular basis of morphometry based 

learning associated transient structural plasticity following MD. Although we 

assume astrocytic enlargement as the major cellular mechanism underlying 

structural plasticity of GM, we have decided to check all other possible 

factors like spine density, Arc expression, astrocytic morphological changes 
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and neuronal, glial as well as angio-genesis to elucidate the complete 

microscopic profile of learning associated macrostructural plasticity.
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3. Material and Methods 

3.1. Animals 

In this study 8 weeks old Wistar rats of the strain RccHan
TM

: WIST (Harlan 

Laboratories, Horst, Netherlands) were used. The animals were kept in the service 

unit for small rodents (SEC) of the Institute of Laboratory Animal Science (IVTK) of 

the University of Jena under specific pathogen-free (SPF) and constant conditions 

(22-24 °C, 70-80% humidity, 12-hour day / night cycle) with free access to food and 

water. In accordance with the Animal Protection Act, the rats were carried out in the 

cages of type IV (595 x 380 x 200 mm). The animal experiments were carried-out 

within the framework approved by the Thuringian State Office of Food Safety and 

Consumer Protection under the planned experiment one-compliance with the 

provisions and in coordination with the Animal Experiments Officer (TVA 02-24 / 

11). 

3.2. Study design 

Test study 

Test experiment was performed to establish the strategies for main longitudinal and 

cross-sectional studies. Rats were tested with visual optometer for two days to get the 

baseline measurements of visual acuity and contrast sensitivity. Next day, MD of the 

left eye for all the rats was performed. Rats were then tested for seven consecutive 

days with visual optometer and then sacrificed (Fig. 2). 

Following the two days baseline measurements with the visual optometer, MD of the left 

eye was performed. Afterwards, the optometry was performed for consecutive seven 

days. The rats were then sacrificed. 

Fig. 2: The regimen for test study. 

Optometry 

Ϯ 
1 3 7 4 2 5 6 -1 

MD 
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(A) (MD-OPT-MRI): Following the two days’ baseline optometry, baseline MRI and MD of 

the left eye was done at the same day. Afterwards, MRI was performed at day 3, 7 and 10 while 

optometry was performed for 1, 2, 4, 5, 6, 8 and 9 day following MD. The rats were then 

sacrificed. (B) (MD-MRI): Baseline MRI and MD of left eye were done at the same day. 

Afterward, MRI was performed at day 3, 7 and 10. Optometry was performed at 10d of MD 

after last MRI. The rats were then sacrificed. (C) (OPT-MRI). Following two days’ baseline 

optometry, baseline MRI was performed. Afterwards, MRI was performed at day 3, 7 and 10 

while optometry was performed for 1, 2, 4, 5, 6, 8 and 9d after baseline MRI. Rats were then 

sacrificed. 

Fig. 3: The regimen for longitudinal study. 

A 

MD 

1 3 7 10 9 8 4 2 5 6 

MRI 

-1 

Optometry 

Ϯ 

MD-OPT-MRI 

B 

MD 

1 3 7 10 9 8 4 2 5 6 

MRI 

Optometry 

Ϯ 

MD -MRI 

C 

1 3 7 10 9 8 4 2 5 6 

MRI 

-1 

Optometry 

Ϯ 

OPT-MRI 

 Longitudinal study 

For longitudinal study, three different kinds of the strategies were employed.  

In the first approach, MD and visual optometry were coupled with MRI and DBM 

analysis (MD-OPT-MRI). Following the two days’ baseline visual optometry 

measurements of both eyes, baseline MRI was done. Afterwards, MD of the left eye 

for MD rats was performed on the same day. Following MD, MRI was performed at 

day 3, 7 and 10 and for rest of the days optometry for the undeprived right eye was 
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done.  Then rats were sacrificed (Fig. 3A).  

For the second approach, we coupled MD with MRI and DBM analysis (MD-MRI). 

Following the baseline MRI, MD of the left eye for MD rats was performed at the 

same day. Following MD, MRI was performed at day 3, 7 and 10 and for rest of the 

days, rats stayed in the cages. In order to analyze the effect of MD (without daily 

optometry) on VA, after last MRI at 10d of MD, the optometry was performed to 

measure VA sensitivity of the undeprived right eye. Then, the left eye of all MD rats 

was re-opened and VA of the left eye was measured to calculate the enhancement as 

the baseline OKR of both eyes were found same in test study and first approach 

(MD-OPT-MRI) (Fig. 3B).  

For the third approach, we coupled optometry with MRI and DBM analysis (OPT-

MRI). Following the two days’ baseline visual optometry measurements of both 

eyes, baseline MRI was done. Afterwards, MRI was performed at day 3, 7 and 10d 

following the baseline MRI and for rest of the days optometry for both eyes was 

done. Then rats were sacrificed (Fig. 3C). 

For all three approaches, age-matched control rats were also measured with MRI but 

not tested for optometry. 

Cross-sectional study 

For cross-sectional studies, we included 2 groups of MD (MD-3d and MD-10d) 

along with control rats. For MD rats, after two days’ baseline optometry, MD of the 

left eye was performed. Md-3d group was tested with optometer for 3days and 

sacrificed at 3d after optometry while Md-10d group was tested with optometer for 

10days and then sacrificed at 10d of MD (Fig. 4) All the groups (MD-3d, MD-10d 

and Control) were sacrificed at the same age (72 days). 
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5′-Bromodeoxyuridine labeling study 

In order to analyze the contribution of cell genesis in GM swelling seen by MRI at 

day 3 following MD, the proliferating cells were analyzed in MD-3d and control rats. 

To label the proliferating cells, thymidine analog 5′-bromodeoxyuridine (BrdU, 

Sigma-Aldrich, St Louis, MO, USA; 100 mg/kg body weight) dissolved in 0.9% 

saline  was used. Both MD (n = 7) and control (n = 6) rats were injected with BrdU 

every 12 hours for 3 consecutive days. MD rats received the first injection 

immediately after the closing of the left eye (MD). These rats were sacrificed 12 

hours after the last injection (Fig. 5). 

Optometry 

Ϯ 
1 3 7 10 9 8 4 2 5 6 -1 

MD 

MD-10d 

Ϯ MD-3d 

Following two days’ baseline optometry, baseline MD of the left eye was done. 

Afterwards, MD-3d rats were tested with optometer for 3days and then sacrificed. MD-

10d rats were tested with optometer for 10days and then sacrificed. 

Fig. 4: The regimen for cross-sectionalstudy. 

(A) BrdU was injected immediately after MD (2daily 100 mg/kg BrdU injections, 12 

hours apart). (B) The control rats (without MD) were also injected in the same manner. 

Rats were sacrificed 12 hours after the last injection (day 3). 

MD 

BrdU 

1 2 3 0 
Ϯ 

BrdU 

1 2 3 0 
Ϯ 

Fig. 5: 5′-Bromodeoxyuridine (BrdU) injection regimen to analyze. 

consequences of MD. 
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3.3. Monocular deprivation (MD) 

To induce the monocular deprivation (MD), we had closed the left eye of rats. For 

this purpose, each rat was first anesthetized by keeping it in the jar having Isoflurane 

(2.5%) and O2: N2O= 20:40 l\h (each 2bar). Then the unconscious rat was transferred 

on the operation table and its mouth was fixed in a pipe with a continuous supply of 

Isoflurane (2.5%) and O2: N2O= 20:40 l\h (each 2bar) to keep the rat unconscious. 

Afterwards, under dissecting microscope the antibiotic Polyspechan HC, N1 (Alcon) 

was applied on the left eye and the surrounding area was cleaned with disinfectant 

Softasept® N (B-Braun, Germany). The eye was sewn shut with stitches and rat was 

kept back in the cage. The stitches were checked every day and the rats which had 

opened their stitched eyes were excluded from the study. 

3.4. Optometry 

The visual acuity (VA) and contrast sensitivity (optokinetic response [OKR]) of rats 

were measured using visual optometer developed by Prusky et al. (2004). 

 

Baseline measurement 

Rats were placed on the platform of the visual optometer individually and were 

allowed to move freely. The door of optometer was closed and the visual stimuli 

consisting of moving gratings (low spatial frequency and 100% contrast) were drawn 

on the walls of optometer. Rat moved its head and upper body parts slowly 

A B C 

(A) A virtual cylinder is projected in 3-D coordinate space on the monitors. The head of the 

animal centers the rotation of the cylinder. (B) When the cylinder is rotated, the animal 

tracks the drifting grating with head and neck movements. (C) A single-frame video camera 

image of the animal tracking the cylinder grating. The four-line crosshair is positioned 

between the eyes of the animal, and the coordinates are used to center the rotation of the 

cylinder (Prusky et al., 2004). 

Fig. 6: Virtual geometry and optomotor. 

response. 
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(tracking), following the grating pattern on the screens. Then the value of spatial 

frequency (cyc/deg) was started increasing systematically with alternatively 

changing the direction of grating until the threshold reached (beyond this value no 

tracking). This threshold represented the visual acuity (VA). To measure the contrast 

sensitivity, the spatial frequency was set at 0.150 cyc/deg. When rat started tracking, 

the value of contrast was started decreasing with the sudden reversal of the direction 

of moving gratings until the threshold reached. This step was repeated for the spatial 

frequency values 0.150, 0.119, 0.89, 0.61, and 0.44 (cyc/deg) to measure the contrast 

sensitivity threshold. For each rat, two baseline measurements were taken. 

Measurement following MD 

Following MD, to measure the change in the visual acuity and contrast sensitivity, 

for the test experiment after MD, optometry was done for consecutive 7 days (Fig. 

2). For longitudinal analysis, optometry was done according to the schedule 

presented in Fig. 3 i.e. the optometry was done at day 1, 2, 5, 6, 8 and 9 of MD and 

baseline MRI and no testing was done at day 3, 4, 7 and 10 because rats were 

transferred to another place for MRI. For cross-sectional analysis, two groups: MD-

3d and MD-10d were included. Following MD, optometry was performed for 

consecutive 3 days for the MD-3d group while for consecutive 10 days for the MD-

10d group (Fig. 4). On each day before starting, the eyes of all the rats with MD were 

checked very carefully. Then each MD rat was kept on the platform and tested for 

the visual acuity and contrast sensitivity threshold in the same way as described for 

the baseline measurement. As the left eye was closed, the tracking was only in the 

counter-clockwise direction. But the direction of the grating was changed 

alternatively to make sure that tracking was just in the response to movements of the 

grating.  

3.5. Magnetic resonance Imaging (MRI)  

To analyze the structural changes in the GM of rats during MD, MRI was performed 

according to the scheme presented in Fig. 3 i.e. the first measurement was taken 

before MD as a baseline MRI and afterwards 3 measurements were taken following 

MD for both MD as well as control rats with co-operation of Medical Physics Group 

of the Institute of Diagnostic and Interventional Radiology (IDIR) of the University 

Hospital Jena. For this purpose, a clinical 3T whole body scanner (MagnetomTIM 

Trio, Siemens Medical Solutions, Erlangen, Germany) equipped with a dedicated rat 
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head coil with a linearly polarized Litz coil volume resonator (Doty Scientific Inc., 

Columbia, SC, USA) was used as described previously (Herrmann et al., 2012).  

 

Briefly, freely breathing rats were anesthetized with isoflurane (1.7 % in oxygen, 1.5 

l/min). T2-weighted images were obtained using a 3D SPACE (Sampling Perfection 

with Application-Optimized Contrasts Using Different Flip Angle Evolutions) 

sequence (Siemens Healthcare, Erlangen, Germany) with an isotropic resolution of 

0.33 mm
3
 (matrix 192×130×96, FoV 64×43×32 mm, bandwidth 145 Hz/px, 

TE/TR=352 ms/2500 ms, flip angle-mode ‘T2var’, echo spacing of 10.7 ms, turbo 

factor of 67 and Partial Fourier of 7/8 in both phase encode directions). While the 

CPC coil measurements were performed using three repetitions each consisting of 

two averages with a total acquisition time TA=42 min, the improved signal-to-noise 

ratio (SNR) performance of the Doty coil enabled a protocol with two repetitions 

(one average) with TA=14 min. 

3.6. Deformation based morphometry (DBM)  

The changes in the brain structure were analyzed by deformation-based 

morphometry (DBM) which warps subsequent MR images of individual datasets to 

match their baseline images by high-dimensional nonlinear registration (Gaser et al., 

2012) with the MATLAB-based application package SPM8 (Wellcome Department 

of Imaging Neuroscience, United kingdom). The Jacobian determinant of the 

deformations was used to calculate the voxel-wise local volume changes with 

significance criteria: strong (with correction) and weak (without correction). During 

the DBM analysis, the stack of four three-dimensional T2-weighted MR images was 

generated per animal (MD: n=24; CTR: n=23; Figure 3). First measurement was 

performed immediately before MD to obtain an individual reference image. The 

Fig. 7: Photograph showing coil placement, 

immobilization of the animal head and 

anesthesia supply on clinical 3T whole body 

scanner. 

The rat is fixed by a head mount on a small 

animal imaging platform. Inhalation 

anesthetics are supplied through the tubes on 

the far right directly to the rat’s snout 

(Herrmann et al., 2012). 
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remaining three measurements followed sequentially 3, 7 and 10 days after MD. 

Next, the images generated after MD were warped onto their own reference image by 

high-dimensional nonlinear registration. This registration minimizes morphologic 

differences between each sequential image and the reference image and the 

information about these differences is coded in three separate deformation fields. 

Then we used the Jacobian determinant to calculate the local volume changes over 

time in relation to the first measurement. Finally, we tested the voxel-wise for spatio-

temporal differences between MD- and control animals by using a repeated measure 

ANOVA. We applied a t-test to investigate an interaction between time and group by 

testing for an early volume increase in MD-animals relative to controls (MD-

3d>MD-10d vs. CTR-3d<CTR-10d). Additionally, we tested in the contrary for MD-

induced late evolving volume increases (MD-3d<MD-10d vs. CTR-3d>CTR-10d). 

3.7. Immunohistochemistry 

Transcardial perfusion 

Rats were deeply anesthetized in a sealed jar containing isoflurane-soaked cotton 

balls. Afterward, rats were transferred to a plastic tray and fixed with clamps. For 

continuous anesthesia, a 50 ml tube (Eppendorf) containing isoflurane soaked paper 

towel was inverted at the nose of the rat. They were then transcardially perfused 

through the left cardiac ventricle using a peristaltic pump (35 ml/min) with 70 ml of 

phosphate-buffered saline (PBS, pH 7.4) followed by 280 mL of 4% 

paraformaldehyde (PFA)(Riedel de Häen). The brains were removed and post-fixed 

in the same fixative solution at 4°C overnight. 

Cryoprotection 

Brains were cryoprotected first in a 10% sucrose solution (4°C, 1day) and then in 

30% sucrose solution in PBS at 4°C until they sank down. Next, brains were flash-

frozen in -30°C methyl butane (Merck, Germany) and stored at -80°C. 

Cutting of frozen sections 

For immunohistochemical analysis, brains were sectioned with a cryostat (Leica 

2000 R SM, Germany). The brains were frozen on the stage using Tissue-Tek 

(Sakura) and the temperature reached at -43 ° C within 10 minutes. Coronal sections 

of 40µm thickness were sectioned and collected in antifreeze solutions containing 

30% ethylene glycol and 30% glycerol and stored at -20°C. 
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Immunohistochemical staining 

For immunohistochemical analysis of BrdU (5′-Bromodeoxyuridine), S100ß (S100 

calcium-binding protein B), GFAP (Glial fibrillary acidic protein) and Arc (activity-

regulated cytoskeleton-associated protein), DAB (3, 3’-diaminobenzidine) staining 

was performed by avidin-biotin-peroxidase method (Figure 8). The detailed protocol 

for each immunogen is presented in the table (Tab.1). Briefly, free-floating 40µm 

thick coronal sections (Bregma approximately -5.04-6.12 mm) were washed 

overnight at 4°C. Next day, they were incubated in H2O2 (Merck, Germany) to 

inactivate endogenous peroxidises for 30min followed washing. Next, the blocking 

was done in normal serum from the species in which the secondary antibody was 

raised. After that, slices were incubated with primary antibody (BrdU, S100ß, GFAP, 

Arc) overnight at 4°C. Next day, after being washed, slices were re-blocked with 

same serum and then incubated in secondary antibody two hours followed by 

washing. Next, slices were incubated in AB-Reagent (Avidin-Biotin-Peroxidase-

complex, prepared 30 min before) (Vectastain Elite ABC-Kit, Vectorlab, PK-6100, 

USA) and then washed. The slices were transferred to DAB solution (DAB-Tablet, 

Sigma D-4293, USA) and to develop the reaction H2O2
 
solution (H2O2-Tablet, Sigma 

U8879, USA) was added. Finally, the slices were washed and mounted on slides in 

Gelatine (Roth, Germany) and covered with Entellan (Merck, Germany) and 

coverslips and coded before quantitative analysis. Primary antibodies were as 

follows:  BrdU (rat, AbD Serotec, USA), S100ß (rabbit, Synaptic system, Germany), 

GFAP (mouse, Chemicon, USA), Arc (guniea pig, Synaptic system, Germany) (Tab. 

3). 

 

Fig.  8: Schematic representation of the immunohistochemical detection by the 

avidin-biotin-peroxidase method. 

At first, the primary antibody binds specifically to the antigen. Then primary antibody 

coupled to the secondary biotinylated antibody. Finally, the avidin binds with biotin- 

peroxidase (P) to make Avidin-Biotin-P complex. Peroxidases oxidize the associated 3, 3'-

diaminobenzidine (DAB) to a brown phenazine polymer, H2O2 acts as an electron 

acceptor. 
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Tab. 1:  Protocols for immunohistochemistry of each immunogen. 

Steps Arc GFAP S100ß BrdU 

Washing 5 x 15 min in TBS 6 x 10 min in TBS-T 2 

(0.2% Triton X-100) 

6 x 10 min in TBS-T2 6 x 15 min in TBS 

Quenching of endogenous 

peroxidase  

(30 min at RT) 

0.45% H2O2 in TBST 1     

 

0.24% H2O2 
 in TBST 2     

 

0.24% H2O2 
 in TBST 2     

 

0.45% H2O2 in TBST 1     

 

Washing 3 x 15 min in TBS 3 x 10 min in TBS-T 2 3 x 10 min in TBS-T 2 3 x 15 min in TBS 

Denaturation 

(30 min at 37
 O

C) 

- - - 2N HCL 

pH Neutralisation   

(30 min at RT) 

- - -  0.1M borate buffer (pH : 8.5) 

Washing - - - 2 x 15 min in TBS 

Blocking (at RT) 30 min in TBS-Plus 1 2 h in TBS-Plus 2 2 h in TBS-Plus 2 30 min in TBS-Plus 1 

Primary antibody  

(overnight at 4
 O

C) 

Anti-Arc (guniea pig, 

Synaptic system) 1 : 500 

in TBS-Plus 1               

Anti-GFAP (mouse, 

Chemicon) 1 : 1000 in TBS-

Plus 2    

Anti-S100ß (rabbit, Synaptic 

system) 1 : 12000 in TBS-

Plus 2  

Anti-BrdU (rat, abD Serotec) 

1 : 500 in TBS-Plus 1  

Washing 3 x 15 min in TBS 4 x 10 min in TBS-T 2 4 x 10 min in TBS-T 2 3 x 20 min in TBS 

Re-blocking (30 min at RT) TBS-Plus 1 TBS-Plus 2 TBS-Plus 2 TBS-Plus 1 

Secondary antibody  

(at RT) 

Donkey anti- guniea pig 

(Jackson) 1 : 500 in 

TBS-Plus 1               

Donkey anti- mouse 

(Jackson) 1 : 500 in TBS-Plus 

2               

Donkey anti- rabbit (Jackson) 

1 : 500 in TBS-Plus 2 

Donkey anti- rat (Jackson) 

1 : 500 in TBS-Plus 1 

Washing 3 x 10 min in TBS 4 x 10 min in TBS-T 2 4 x 10 min in TBS-T 2 3 x 10 min in TBS 

AB- Reagent ( 1 hour at RT) In TBS-T 1 in TBS-T 2 in TBS-T 2 in TBS-T 1 

Washing 3 x 10 min in TBS 4 x 10 min in TBS-T 2 4 x 10 min in TBS-T 2 3 x 10 min in TBS 

DAB reaction  

(10 min at RT) 

In TBS-T 1 in TBS-T 2 in TBS-T 2 in TBS-T 1 

Washing 3 x 10 min in TBS 4 x 10 min in TBS-T 2 4 x 10 min in TBS-T 2 3 x 10 min in TBS 
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 Tab. 2: Buffers used for immunohistochemistry. 

 

 

 

Buffer Recipe 

TBS 26.44g HCl, 2.88g Tris-Ultra (Base), 18g NaCl, 2N HCL to adjust pH: 7.4, final volume 2000ml with dist. H2O. 

TBS-T 1  1X TBS, 0.1% Triton X-100 

TBS-T 2 1X TBS, 0.2% Triton X-100 

Citrate buffer 1.47g Na3C6H5O7 in 400ml dist. H2O, 2N HCL to adjust pH: 6, 0.25ml Tween 20, final volume 500ml with dist. H2O. 

Borate buffer Stock I (0.1 M Boric acid), Stock II (0.1M Sodiumtetraborat-decahydrat). 50ml of Stock I to 250ml of Stock II to adjust pH: 8.5.  

TBS-Plus 1 1X TBS, 0.1% Triton X-100, 3% Normal donkey serum, 2% Bovine serum albumin (BSA), 2% Milk powder. 

TBS-Plus 2 1X TBS, 0.2% Triton X-100, 3% Normal donkey serum. 

AB reagent 50µl reagent A, 50µl reagent B, 2.5ml TBS-T.   

DAB reagent 1 tablet DAB in 5ml TBS-T, 1 tablet H2O2 in 5ml TBS-T.  

PBS 8g NaCl, 0.2g KCl, 1.44g NA2HPO4, 0.24g KH2PO4, 2N HCL to adjust pH: 7.4, final volume 1000ml with dist. H2O. 

Abbreviations:  HCL, Hydrochloric acid, KCl: Potassium chloride, KH2PO4: Potassium dihydrogen phosphate, ml: milliliter, µl: microliter, N: Normal, NaCl: 

Sodium chloride, TBS: Tris-buffered saline, TBS-T: Tris-buffered saline- Triton X-100, DAB: 3, 3’-Diaminobenzidine, PBS: Phosphate-buffered saline.  

Abbreviations for Tab.1: Arc: Activity-regulated cytoskeleton-associated protein, BrdU: 5′-Bromodeoxyuridine, DAB: 3, 3’-Diaminobenzidine, Sec.: 

Secondary, GFAP: Glial fibrillary acidic protein, HCL: hydrochloric acid, min: minute, PBS: Phosphate-buffered saline, Pr.: Primary, S100ß: S100 calcium-

binding protein B, TBS: Tris-buffered saline, TBS-T: Tris-buffered saline- Triton X-100.  

https://en.wikipedia.org/wiki/S100_protein
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Tab. 3: Antibodies used for immunohistochemistry. 

  

 

 

Pri. Antibody Source Cat # Company Sec. Antibody Source Cat # Company 

Anti-BrdU Rat OBT0030CX AbB  Serotec, 

USA 

Anti-Rat 

Biotinylated 

Donkey  712-067-003 Jackson ImmunoResearch 

Laboratories, USA 

Anti-S100ß Rabbit 287003 Synaptic system, 

Germany 

Anti-Rabbit 

Biotinylated 

Donkey  711-065-152 Jackson ImmunoResearch 

Laboratories, USA 

Anti-GFAP Mouse MAB360 Chemicon, USA Anti-mouse 

Biotinylated 

Donkey  715-065-151 Jackson ImmunoResearch 

Laboratories, USA 

Anti-Arc Guniea pig 156005 Synaptic system,  

Germany 

Anti-Gunie pig 

Biotinylated 

Donkey  706-065-148 Jackson ImmunoResearch 

Laboratories, USA 

Abbreviations: Arc: Activity-regulated cytoskeleton-associated protein, BrdU: 5′-Bromodeoxyuridine, Sec.: Secondary, GFAP: Glial fibrillary acidic protein, 

Pr.: Primary, S100ß: S100 calcium-binding protein B.  

https://en.wikipedia.org/wiki/S100_protein
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3.8. Golgi-Cox Staining 

The Golgi staining for neurons and astrocytes was performed using FD Rapid Golgi 

Stain™ kit (FD Neurotechnologies, USA). The neuronal staining was performed 

according to the manufacturer‘s instructions. Briefly, animals were decapitated by 

rodent guillotine following anesthetization in a sealed jar containing isoflurane-

soaked cotton balls. Brains were immediately extracted and rinsed briefly in Milli-Q 

water to remove the blood from the surface. They were then immersed in the 

impregnation solution, made by mixing equal volumes of the Solutions A and B, and 

stored at room temperature for 2 weeks at 26°C in the dark. The impregnation 

solution was replaced next day. For astrocytes, we used  FD Rapid Golgi Stain™ kit 

according to our own established protocol (Gull et al., 2015). Briefly, the isoflurane 

anesthetized rats were transcardially perfused with 4% PFA. The extracted brains 

were post-fixed for 4 days in the same fixative additionally containing 8% 

Glutaraldehyde. Afterwards, they were immersed in the impregnation solution, made 

by mixing equal volumes of Solutions A and B for 3 days at 26°C in the dark. The 

impregnation solution was replaced next day. After impregnation; for the both glial 

and neuronal staining, the impregnated brains were then transferred into Solution C 

and stored at 4ºC in the dark for 1 week. The solution was replaced after the first 24 

hours of immersion. Next, these brains were flash-frozen in -30°C methyl butane and 

stored at -80°C. Afterwards, brains were then sliced (150µm/slice) using a cryostat 

(Leica CM3050 S, Germany) at -22°C and slices were collected on Superfrost Plus 

glass slides (Thermo Scientific, USA) with solution C and dried naturally at the room 

temperature. These slides were rinsed with Milli-Q water twice, 2 minutes each and 

then placed in a mixture consisting of 1 part solution D, 1 part solution E, and 2 parts 

Milli-Q water for 10 minutes. Then, they were rinsed in double Milli-Q water 2 

times, and dehydrated in solutions of increasing ethanol concentration (50%, 70%, 

and 95%) for 4 minutes each and in the absolute ethanol for 16 minutes. Finally, they 

were cleared in xylene for 12 minutes before coverslipped in Entellan. The slides 

were then coded to make quantitative analysis blind. 

3.9. Quantitative analysis of cell density 

The density of BrdU
+,

 S100ß
+
 and Arc

+
 cells was calculated in MD-3d, MD-10d and 

control rats. The brain regions were selected according to “The rat brain in 

stereotaxic coordinates”(Paxinos and Watson, 2004). As previously described 
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(Raslan et al., 2014), analyses were performed using the Stereo Investigator software 

8.1 (MicroBrightField [MBF], USA) and a microscope (Axioscope 2 mot plus, Zeiss, 

Germany) equipped with a motorized stage (Zeiss, Germany) and a CX 9000 digital 

camera (MBF, USA). Cell density (NV) was estimated by applying optical 

fractionator method in two slices per animal with randomly placed dissectors. The 

regions of interest were outlined (Plan Neofluar 5x objective, Zeiss. Germany). For 

cell counting, a Plan Neofluar 40x objective (Zeiss) was used (Fig. 9) and the 

dissector size for BrdU
+
, S100ß

+
 and Arc

+
 cells was used according to the Tab. 4. 

 

Tab. 4: Sampling schemes used for cell counts. 

 

 

 

Marker Region Grid 

(µm) 

Counting 

frame 

(µm) 

Disector 

height 

(µm)
   
 

Guard 

Zone 

(µm)
   
 

BrdU LEnt 200 x 200 150 x 150 11 2 

Au1 200 x 200 150 x 150 11 2 

S100ß LEnt 100 x 100 65 x 65 11 2 

Au1 120 x 120 80 x 80 11 2 

Arc LEnt 100 x 100 60 x 60 11 2 

Au1 100 x 100 60 x 60 11 2 

Abbreviations: Arc: Activity-regulated cytoskeleton-associated protein, BrdU: 5′-

Bromodeoxyuridine, Au1: primary auditory cortex, BrdU: 5′-Bromodeoxyuridine, LEnt 

lateral entorhinal cortex, S100ß: S100 calcium-binding protein B.  

C A B 

The region of interest was constructed using Stereo Investigator under lower magnification 

(50X). Then a grid and frame of specific size were applied under higher magnification 

(400X). Next, the cells present inside and also intersecting with green lines of the frame 

were marked. The software then presented the number of marked cells that were exported to 

Microsoft Excel and numbers were used to calculate the density. Scale bars: A, B and C, 

20µm. 

Fig.  9: Schematic representation of the strategy employed for measuring the cell 

density of BrdU
+
 (A), S100ß

+
 (B) and Arc

+
 (C) cells. 

https://en.wikipedia.org/wiki/S100_protein
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3.10. Quantitative analysis of Spine density 

The spines were quantified on the basal dendrites of pyramidal in MD-3days (n = 4 

rats), MD-10days (n = 4 rats) and control (n = 5 rats). Since the density depends on 

the order of dendrites (Kassem et al., 2013), we have performed the analysis 

specifically from order 2 to 3 of basal dendrites. Golgi stained slides were analyzed 

on a light microscope (Axioskop 2 mot plus; Carl Zeiss, Germany equipped with 

MBF CX9000 digital camera). A 100X objective was used for spine analysis.  

Three neurons per hemisphere and three basal dendrites per neurons were selected. 

All the protrusions were counted as spines if they were in the direct contact with the 

dendritic shaft.  Five types of spines were quantified: small (≤ 1µm), medium (1-

1.5µm), larger (1.5-4.5µm) on the basis of length and mushroom and spiny on the 

basis of shape (Fig. 11). The counting was done manually from second to third order 

dendrites (30-40µm) in Neurolucida 8 (MBF, USA) software. The length of the 

B 

C 

A 

D 

(A) The region of interest was selected using a 5X objective. (B) The basal 

dendrites of the pyramidal neurons were selected under the higher magnification 

40X. (C) For quantification, a 100 X objective was used to manually count the 

spines in the selected segment (order 2-3 of a basal dendrite). (D) Afterward,  the 

same segment was constructed using Neurolucida under 100X objective and the 

length of constructed segment was measured using Neurolucida Explorer and then 

the spine count was divided by the segment length to get the spine density of that 

segment. Scale bars: A, 100µm; B and C, 10µm. 

Fig. 10: Schematic representation of the strategy employed for quantification 

of spine density. 
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selected segment was measured by Neurolucida Explorer (MBF, USA) (Fig. 10). 

Once the segment spines were counted, the number was divided by the length of the 

segments measured using Neurolucida Explorer, to get spine density of that segment. 

 

 

 

 

 

3.11. Quantitative analysis of astrocytic complexity 

 GFAP stained sections were used to quantify the morphology of astrocytes with a 

light microscope (Axioskop 2 mot plus; Carl Zeiss, Germany equipped with MBF 

CX9000 digital camera) in MD-3days, MD-10days and control rats (n = 6 

rats/group). The analysis was performed only on the strictly stellate shaped 

astrocytes (with > 5primary branches). Seven astrocytes per hemisphere were 

included in the analysis. At first, the morphology of astrocytes was constructed using 

Neurolucida 8 (MBF, USA under 100X objective) and then Sholl‘s concentric circle 

method (Dall'Oglio et al., 2008; Sholl, 1953) was applied using Neurolucida 

Explorer (MBF, USA). In brief, the virtual circles with 3µm intervals were drawn 

(A) Small [≤ 1µm], (B) Medium [1-1.5µm], (C) Larger [1.5-4.5µm], (D) Mushroom, 

(E) Spiny. 

Fig.  11: Representative images of spines in different morphological categories. 

C B A 

(A) The stellate shaped GFAP stained astrocyte was selected. (B) The morphology of the 

selected astrocyte was constructed using Neurolucida software under a 100X objective. 

The Sholl analysis was then performed on the constructed astrocyte using Neurolucida 

explorer. (C) In Sholl analysis, virtual circles with 3μm intervals were drawn around the 

constructed astrocyte and the number of intersections of astrocytic processes with the 

virtual circles was quantified to get the information about the ramification and complexity 

of astrocytes. Scale bars: A, 10µm. 

Fig. 12: Schematic representation of the strategy employed for Sholl method used for 

estimating the degree of astrocytic ramification. 
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around each constructed astrocyte, and the number of intersections of astrocytic 

processes with each virtual circle was quantified that gives a measure of ramification 

and complexity of astrocytes (Fig. 12). 

The primary processes quantification was done by counting the processes extending 

directly from the soma of the same astrocytes. 

3.12. Quantitative analysis of astrocytic volume 

To quantify the volume of astrocytes, Golgi stained sections were utilized. The 

images were taken on a light microscope (Axioskop 2 mot plus; Carl Zeiss, Germany 

equipped with MBF CX9000 digital camera) in MD-3days (n = 7 rats), MD-10days 

(n = 7 rats) and control (n = 5 rats). On average 30 astrocytes per hemisphere were 

selected for the analysis on the basis of their morphology as validated in the literature 

(Grosche et al., 2013; Ogata and Kosaka, 2002; Olude et al., 2015; Ranjan and 

Mallick, 2012). The selected astrocytes appeared as dense precipitates surrounded by 

highly complex and irregularly ramified processes. The volume accessed by single 

astrocyte (i.e., by its territory) was defined as the space over which the astrocyte 

processes extend, including the finest elaborations of the main branches (Grosche et 

al., 2013). To calculate the volume, three-dimensional z-stacks from Golgi-

impregnated brain slices were obtained with a light microscope (Axioskop 2 mot 

plus; Carl Zeiss, Germany equipped with MBF CX9000 digital camera). The area of 

each astrocyte was calculated by using Image J. For this purpose, the stacks of 

individual astrocytes were loaded in Image J (http://rsb.info.nih.gov/ij/index.html) 

A C B 

(A) The region of interest was selected using a 5X objective. (B) The astrocytes were 

selected under the higher magnification 100X. Three-dimensional z-stacks from the 

selected astrocytes were obtained. (C) The stacks of individual astrocytes were loaded in 

the Image J and “Threshold” was applied. Threshold included only the densest part of the 

astrocytes and that area was delineated. Next, the volume was calculated by considering 

the delineated part as a virtual circle. Scale bars: A, 100µm; B and C, 10µm. 

Fig. 13: Schematic representation of the strategy employed for the quantification of 

astrocytic volume. 

http://rsb.info.nih.gov/ij/index.html
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C B A 

 (A) The region of the interest was selected using a 5X objective. (B) The astrocytes with 

rounded soma were selected under the higher magnification with100X objective. Three-

dimensional z-stacks from the selected astrocytes were obtained. (C) The stacks of the 

individual astrocytes were loaded in Image J and “Threshold” was applied. Threshold 

included only the densest part of astrocytic soma and that area was delineated. Next, the 

volume was calculated by considering delineated part as a virtual circle. Scale bars: A, 

100µm; B and C, 10µm. 

Fig. 14: Schematic representation of the strategy employed for the quantification of 

volume of astrocytic soma. 

and processed by applying “Minimum Intensity Z-Projection” method. Then the 

image was scaled and “Threshold” was applied. Threshold included only the densest 

part of astrocytes and that area was delineated. Then the “Data window” represented 

the area in µm³ (Fig. 13). This area was treated as a virtual circle and used to 

calculate the volume of an astrocyte (Grosche et al., 2013).  

To quantify the volume of astroglial soma, S100ß stained slices were used and the 

analysis was performed in the same manner as described above for MD-3days (n= 6 

rats), MD-10days (n= 6 rats) and control (n= 10 rats) (Fig. 14). 

 

 

3.13. Estimation of the volume fraction of astrocytes  

To calculate the volume fraction of astrocytes, Golgi staining data were combined 

with the S100ß
+
 astrocyte counting data, and the influence of different staining 

techniques had to be ruled out. To calculate this factor, the area of 10 Golgi stained 

slices from control rats was measured and normalized to the area of the S100ß
+
 slices 

from control rats. The subtraction from 100% results in the shrinkage of about 35%. 

Assuming that all the structures shrink to about the same degree, we included this 

factor for calculating the normalized volume of astrocytes (VN). We first multiplied 

mean astrocyte territorial volume (VM) of control rats by shrinkage factor and then 

added the resulting value (VS) in VM to calculate VN. 

A 



 Material and Methods 

29 

 

VS = VM * 0.35 

VN = VS + VM 

Next, we multiplied the normalized volume of astrocytes (VN) with the density of 

astrocytes (NV) (estimated by stereological counting S100ß
+
), indicated the volume 

fraction of astrocytes (VF). 

VF = VN * NV 

3.14. Statistical analysis 

Statistics were performed using Sigma plots and SPSS. The groups were compared 

by 1 way ANOVA (analysis of variance), 1-way repeated measures ANOVA on 

ranks, Familywise error (FEW) or by t-test when only two groups were compared. 

The inter-hemispheric comparison was done by paired t-test. Data were excluded 

only based on the out-layers analysis. Statistically significant values are indicated as 

follows: Non-significant (NS): p > 0.05; Significant: *p < 0.05 (among groups), 
$
p < 

0.05 (between hemispheres). 

3.15. Bregma and layer distribution 

For all the microscopic analyses, we included lateral entorhinal cortex (LEnt) as a 

target region while primary auditory cortex (Au1) as a control region. The slices 

were selected from Bregma -5.00 to -6.00 according to “The rat brain in stereotaxic 

coordinates”(Paxinos and Watson, 2004). The layer distribution in LEnt was done 

according to “The Rat Nervous System” (outer layers: I, II, III occupy 65%, middle 

layer: IV occupies 5% and deeper layers: V, VI occupy 30%) (Witter and Amaral, 

2004) while in Au1, outer layers (I, II, III) occupy 36%, middle layer (IV) occupies 

13% and dipper layers (V, VI) occupy 51% area (Zille, 1985 ). The microscopic 

analyses for cross-sectional experiments were done bilaterally in layer II and III of 

LEnt and layer III and IV of Au1.
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4. Results 

4.1. Optokinetic response of undeprived eye 

Following MD, visual perceptual learning was accessed by measuring the OKR 

sensitivity of the undeprived eye. MD has produced large and statistically highly 

significant changes in the OKR sensitivity (measured as visual acuity [VA] and 

cross-sensitivity) through the undeprived right eye and the pattern of enhancement in 

OKR sensitivity was similar for all studies. Tab. 5 provides a summary of the 

statistical analysis, baseline VA and enhanced VA, duration of enhancement after an 

MD in days, p values of repeated-measures ANOVAs for the group, as well as 

references to figures. Tab. 6 provides a summary of the statistical analysis, baseline 

contrast sensitivity and enhanced contrast sensitivity, duration of enhancement after 

an MD in days, p values of repeated-measures ANOVAs for the group, as well as 

references to figures. 

Test study  

For test study, we characterized the effect of 7d of MD on VA and contrast 

sensitivity. No change was observed through both eyes before MD (baseline 

measurements). After MD, OKR sensitivity started increasing for undeprived eye 

and stabilized till day 6 to 7 of MD. The maximum enhancement was observed till 

day 3 and then the speed of increase slowed down and ultimately stopped (Fig. 15). 

0,18

0,2

0,22

0,24

0,26

0,28

0,3

BL BL 1 2 3 4 5 6 7

V
is

u
a

l 
a
cu

it
y

 [
cy

c/
d

eg
] 

Time post MD [days] 

1,80

2,20

2,60

3,00

3,40

3,80

0.044 0.061 0.089 0.119 0.150

C
o

n
tr

a
st

 s
en

si
ti

v
it

y
 

Spatial frequency [cyc/deg] 

MD-7d

Baseline

A B 

Fig. 15: Effect of 7d MD on OKR sensitivity. 

(A) Visual acuity through undeprived right eye was increased gradually and reached a 

maximum over 6 to 7d of MD. (B) Effect of MD on contrast sensitivity was similar: 

sensitivity increased from baseline over 7d of MD. Data represented as mean ± SEM. 
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Longitudinal study 

For longitudinal study, three different kinds of strategies were employed. For the first 

approach, we characterized the effect of MD on VA and contrast sensitivity with 

daily testing with optometer (MD-OPT-MRI) (Fig. 3A). The baseline measurement 

for both eyes was stable. Following MD, optometry was performed at day 1, 2, 5, 6, 

8 and 9. After MD, OKR sensitivity started increasing for undeprived eye and 

stabilized till day 8 of MD. The maximum enhancement was observed till day 3 and 

then the speed of increase slowed down and ultimately stopped (Fig. 16).  

 

 

For the second approach, we characterized the effect of MD on VA sensitivity 

without daily testing with optometer (MD-MRI). Optometry was performed to 

measure VA sensitivity of undeprived right eye at 10d of MD (Fig. 3B). Then, the 

left eye of all MD rats was re-opened and VA of left eye was measured to calculate 

the change in VA of undeprived right eye as the baseline OKR of both eyes were 

found same in test study and first approach (MD-OPT-MRI) and a significant 

increase in VA of undeprived right eye was observed (Fig. 17). 
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Fig. 16: Effect of MD and daily optometry on OKR sensitivity (MD-OPT-MRI). 

(A) Visual acuity through undeprived right was increased gradually and reached a 

maximum over 8d of MD. Gaps indicate the time points where no measurement was 

performed. (B) Effect of MD on contrast sensitivity was similar: sensitivity increased from 

baseline over 9d of MD (as no measurement was performed at 10d of MD). Data 

represented as mean ± SEM. 
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Further, it was observed that the VA increase following MD was significantly more 

when MD was coupled with daily optometry (Fig. 18). 

 

 

For the third approach, we characterized the effect of daily testing with optometer on 

VA and contrast sensitivity without MD (OPT-MRI). The baseline measurement for 

both eyes was stable. Following baseline MRI, the optometry was performed at day 

1, 2, 5, 6, 8 and 9 (Fig. 3C). No enhancement in OKR sensitivity was observed for 

any eye over the entire period. Data represented as taking a mean of both eyes. (Fig. 

19) 
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Fig. 17: Effect of MD without daily 

optometry on VA sensitivity (MD-

MRI). 

Visual acuity through undeprived 

right eye was increased from 

baseline over 10d of MD. Data 

represented as mean ± SEM 
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Fig. 18: Effect of daily 

optometry on visual acuity 

enhancement following MD. 

 The increase in the visual acuity 

through undeprived right eye 

with daily optometry (MD-OPT-

MRI, n=24) was 37% and 

without optometry (MD-MRI, 

n=10) was 24%. Optometry has 

significantly enhanced the VA 

increase following MD. (*p = 

<0.001, Mann-Whitney Rank 

Sum Test). 
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Cross-sectional study 

For cross-sectional study, we have included two groups of MD i.e. MD-3d and MD-

10d where the effect of MD on OKR sensitivity was observed for 3 and 10days time 

duration successively (Fig. 4). No change in baseline measurements was seen. After 

MD, an enhanced VA and contrast sensitivity was observed for the entire period of 

MD for MD-3d rats (Fig. 20) and for MD-10d rats, the enhancement in OKR was 
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(A) Visual acuity through undeprived right eye was increased gradually over 3d of MD. 

(B) Effect of MD on contrast sensitivity was similar: sensitivity increased from baseline 

over 3d of MD. Data represented as mean ± SEM. 

Fig. 20: Effect of 3d MD on OKR sensitivity. 
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(A) Mean of visual acuity through both eyes was remained unchanged after daily 

optometry. Gaps indicate the time points where no measurement with optometer was 

performed. (B) The effect of daily optometry on mean contrast sensitivity was similar: no 

change in sensitivity was observed relative to baseline over 9d of study. Data represented 

as mean ± SEM. 
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Fig.  19: Effect of daily optometry on OKR sensitivity (OPT-MRI). 
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stabilized till day 6 to 7 of MD (Fig. 21). 

 

Time course for change in OKR sensitivity following MD 

Overall we have observed 22-37% enhancement in VA and 8-17% increase in 

contrast sensitivity of undeprived right eye depending on the duration (3-10days). 

The increase in contrast sensitivity also depended on spatial frequency value used for 

contrast sensitivity measurement and the least enhancement was observed for 

bordered spatial frequencies (0.150 and 0.44 cyc/deg). For cross-sectional 

experiments (test study for 7days and MD-10d), we observed maximum OKR 

sensitivity increase (20% in VA and 10% in contrast sensitivity) during initial 3days. 

Afterward, the enhancement slowed down and ultimately OKR threshold became 

stable till 7d. During longitudinal study (MD-OPT-MRI), we found an increase of 

37% in VA and on average 12% in contrast sensitivity following MD. Since 

optometry was skipped for 3, 7 and 10d, a slightly different pattern of increase in 

OKR sensitivity was observed. The maximum enhancement in OKR sensitivity was 

observed for initial 2days (24% in VA and 7% increase in contrast sensitivity) and 

OKR threshold became stable till 8d. 

4.2. Structural brain changes detected by DBM 

To screen for MD-induced macro-structural brain plasticity, MR images were 

analyzed by DBM. We observed similar structural changes for MD-OPT-MRI and A 
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maximum over 6 to 7d of MD. (B) Effect of MD on contrast sensitivity was similar: 

sensitivity increased from baseline over 10d of MD. Data represented as mean ± SEM. 

Fig. 21: Effect of 10d MD on OKR sensitivity. 
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MD-MRI groups, so we have pooled the data as MD group. Similarly, the structural 

profile OPT-MRI group matched with control rats and was pooled together as 

controls. For MD rats, we have found the temporal volume changes in the left 

primary binocular visual cortex (V1B), right secondary visual cortex (V2L), left 

lateral entorhinal cortex (LEnt) and right paramedian lobule (PML) (Fig. 22B; data 

are presented as percentage volume changes in MD-animals normalized to the mean 

of controls) (Tab. 7). The left LEnt showed transient GM swelling (6%) which 

recovered to baseline at the end of the observation period. A similar dynamic was 

found in the left V1B (6%). However, the early GM swelling in V1B shifted into late 

shrinkage (3.7%). A late GM shrinkage was also found in the right V2L (2.8%). In 

contrast to the patterns in LEnt, V1B and V2L, we have observed late GM swelling 

in the left cerebellar PML (4.8%) (Fig. 22C). 

4.3. Correlation of DBM and optokinetic response. 

The daily increase in VA represents the rate of visual perception learning (Fig. 22A). 

In order to find out a correlation between learning rate and brain structural changes, 

the difference in percentage volume changes between MD and controls (% points) 

was plotted against the learning rate. We observed that the temporal pattern of 

volume change observed in LEnt is in best accordance with the rate of visual 

perception learning. The swelling appeared during visual acuity improvement 

whereas it reversed to baseline level as soon as the visual acuity reached the maximal 

value. No shrinkage, which possibly represents a secondary manifestation of sensory 

deprivation in the visual areas, was observed in LEnt (Fig. 22D). Therefore, we 

selected the LEnt for further cross-sectional analyses. Additionally, we included 

primary auditory cortex (Au1) as a control region for each cross-sectional analysis. 
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(A) Learning results: The visual acuity (VA) 

threshold of undeprived right eye was 

significantly increased over the period of 

MD (p < 0.001, 1-way repeated measures 

ANOVA on ranks, Tukey HSD). The 

Learning rate (daily increase in VA 

threshold) was maximum at day 1 following 

MD and then gradually decreased. (B) DBM 

analysis indicates the volume changes in the 

ipsilateral lateral entorhinal cortex (LEnt), 

primary visual cortex (V1B) paramedian 

lobule (PML) and contralateral secondary 

visual cortex (V2L) to closed eye in MD rats. 

(d)  The temporal dynamics of GM volume 

changes during MD shows in MD rats (n = 

24): at 3d a significant transient expansion in 

LEnt and V1B relative to baseline and aged 

match control rats (n = 23); at 10d a 

significant expansion in PML relative to 

baseline and controls, a tendency of 

increased volume in LEnt and significant 

shrinkage in V1B and V2L with respect to 

control rats (p < 0.05, one way ANOVA, 

FWE).  (D) When normalized GM changes 

(difference in volume of MD and control 

rats) were plotted against learning rate, a 

positive correlation at all-time points (MD-3, 

7 and 10) was seen only for LEnt. 

Fig.  22: DBM and learning results. 



 Results 

37 

 

 

4.4. Density of newly born nuclei and matured astrocytes 

Given the assumption that angio as well as neuron/glial genesis may contribute to the 

volume expansion detected with DBM, we addressed this question using 5′-

Bromodeoxyuridine (BrdU) labelled nuclei of newly born cells which were counted 

to analyze the proliferation in control (n = 6) and MD-3d (n = 7). Although no 

significant difference was found between the groups for LEnt of each hemisphere but 

a trend towards the reduction in the density of newly born cells was observed in 

ipsilateral LEnt of MD-3d rats (p = 0.16, student t-test), (Fig. 23A), (Tab. 8) 

supporting the observation that volume changes in GM affect the cell density 

(Vernon et al., 2014). No such trends had been seen in Au1 (Fig. 23B) (Tab. 8).  

Graphs present the 

density of BrdU+ cells in 

monocularly deprived 

(MD-3d: n=7) and 

control (CTR: n=6) rats 

in ipsi (Ip) and 

contralateral (Co) LEnt 

(A) and Au1 (B). No 

significant difference was 

seen between the groups 

(p > 0.4, student t-test) 

and among the 

hemispheres (p = > 0.5, 

paired t-test) for both 

LEnt and Au1 but a trend 

towards reduction in 

density of newly born 

nuclei was observed in 

ipsilateral LEnt of MD-3d rats. Data represented as mean ± SEM. 

 

For additional confirmation, we then applied the analogous approach for analyzing 

the astrocytic density using S100ß stained astrocytes. The density was compared in 

LEnt and Au1 of each hemisphere among control (n = 10), MD-3d (n = 5) and MD-

10d (n = 6) rats. In ipsilateral LEnt, counting revealed that the mean density of 

astrocytes (number of astrocytes per mm³) in control rats was 35309.3 ± 516.6, in 

MD-3d was 33566.4 ± 920.4 and in MD-10d was 35431.2 ± 492.7. A significant 

reduction in density was observed in MD-3d rats relative to both control and MD-
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10d rats (p < 0.05, Student t-test) (Fig. 24A) (Tab. 9), No such changes had been 

seen in Au1 (Fig. 24B) (Tab. 9). 

 

Graphs present the density 

of S100ß+ astrocytes in 

monocularly deprived 

(MD) and control (CTR) 

rats in ipsi (Ip) and 

contralateral (Co) LEnt 

(A) and Au1 (B). A 

significant reduction in 

density of S100ß+ 

astrocytes was observed in 

ipsilateral LEnt in MD-3d 

rats (n=5) relative to both 

control (n=10) and MD-

10d rats (n=6) (p < 0.05, 

Student t-test).  Data 

represented as mean ± 

SEM. 

 

This reduction in the density of BrdU
+
 and S100ß

+
 cells reflects the morphometry 

based volume expansion at the histological level in LEnt. 

4.5. Density of matured and immatured spines 

Golgi stained neurons were used to determine the quantitative changes in the 

densities of small, medium, large, mushroom and spiny spines along the second and 

third orders of basal dendrites of pyramidal neurons in the outer layer (II/III) of LEnt 

and middle layers (III/IV) of AU1 cortex in MD-3days (n= 4 rats), MD-10days (n= 4 

rats) and control (n= 5 rats). The analysis was performed on 3 basal dendrites/neuron 

and 3 neurons/rat.  Once the branch order was determined for basal dendrite, the 

spine count for each type was carried out separately at higher magnification (using 

100X objective).  

In ipsilateral LEnt, a significant increase in the density of the medium, large, 

mushroom and spiny spines was seen in both MD-3d and MD-10d groups (p < 0.01, 

1-way ANOVA, Tukey HSD). The medium spines were increased significantly for 
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both MD groups (p < 0.001, 1-way ANOVA, Tukey HSD)  but in MD- 3d rats the 

density was more than MD-10days rats (p < 0.05, 1-way ANOVA, Tukey HSD). The 

density of small spines was increased significantly in MD-3d (p < 0.001, 1-way 

ANOVA, Tukey HSD) but not in MD-10d rats (p = 0.14, 1-way ANOVA, Tukey 

HSD). No significant change in density was observed for any type of spines among 

the groups for right LEnt (p > 0.3, 1-way ANOVA, Tukey HSD) (Tab. 10). The 

group-wise inter-hemispheric comparison revealed the same pattern of increase in 

spine density in  MD-3d as well as in MD-10d  rats (p < 0.05, Paired t-test) (Fig. 27), 

(Tab. 12). The overall increase in spine density was 57% in MD-3d and 30% in MD-

10d and 52% enhanced spine pool consisting on matured spines persisted (Fig. 25, 

26D). 

 

The spine density in Au1 cortex was neither significantly changed among the groups 

(MD-3days vs MD 10-days vs Control) (p > 0.1, 1-way ANOVA, Tukey HSD) nor 

between the hemispheres (Left vs Right) (p > 0.1, Paired t-test) within individual 

groups (Fig. 27), (Tab. 11, 12). 
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spine density of MD rates 
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Golgi-stained neurons were used for estimating the changes in spine density. (A) 

Photomicrograph of a Golgi-stained pyramidal neuron.  The analysis was performed 

on 2nd and 3rd orders of basal dendrites. Scale bar: 20µm. (B) Spine characterization 

in control rats. Graph presents the density of different types of spines. CTR (control), 

sm (small), md (medium), large (la), msh (mushroom), sp (spiny). (C) Graph presents 

the change in the density (#: number of spines per 100µm) of different types of spines 

in monocularly deprived (MD) rats relative to CTR rats (The density of spines in CTR 

is taken equivalent to 0). (D) Graph presents the percentage (%) change in density of 

different types of spines in MD-10d rats with respect to CTR rats. Graphs (C) and (D) 

indicate that the shift in the density of immatured (Sm) spines was transient while 

matured and stable spines stayed permanently (MD-3d: n=4, MD-3d: n=4, Control: 

n=5; 3 neurons/animal; 3 dendrites/neuron (*p < 0.05, one-way ANOVA, Tukey HSD. 
$p < 0.05 ipsi- vs. contralateral, paired t-test).  Data represented as mean ± SEM. 

Fig. 26: Effect of MD on spine density of basal dendrites of pyramidal neurons in 

LEnt. 
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Fig.  27: Effect of MD on spine density of basal dendrites of pyramidal neurons in 

Au1. 

Golgi-stained neurons were used for estimating the changes in spine density. (A) 

Photomicrograph of a Golgi-stained pyramidal neuron.  The analysis was performed on 

2nd and 3rd orders of basal dendrites. Scale bar: 20µm. (B) Spine characterization in 

control rats. Graph presents the density of different types of spines. CTR (control), sm 

(small), md (medium), large (la), msh (mushroom), sp (spiny). (C) Graph presents the 

change in the density (#: number of spines per 100µm) of different types of spines in 

monocularly deprived (MD) rats relative to CTR rats (The density of spines in CTR is 

taken equivalent to 0). (D) Graph presents the percentage (%) change in density of 

different types of spines in MD-10d rats with respect to CTR rats. Graphs (C) and (D) 

indicate no significant change in density of immatured (Sm) and matured and stable spines 

in Au1 (MD-3d: n=4, MD-3d: n=4, Control: n=5; 3 neurons/animal; 3 dendrites/neuron (*p 

> 0.1, one-way ANOVA, Tukey HSD. $p > 0.1 ipsi- vs contralateral, paired t-test).  Data 

represented as mean ± SEM. 
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4.6. Morphological changes in astrocytes 

We quantified and compared the morphology of astrocytes by Sholl analysis 

(Dall'Oglio et al., 2008; Sholl, 1953; Viola et al., 2009) using GFAP stained 

astrocytes in LEnt and Au1 of both hemispheres of control, MD-3d and MD-10d 

groups (n = 42 Astrocytes from 6 rats/each group). For Ipsilateral LEnt, the 

quantification revealed that the mean number of intersections (a measure of 

complexity) in control rats was 18.8 ± 0.4, in MD-3d was 16.1 ± 0.4 and in MD-10d 

was 21.4 ± 0.5. Statistical analysis indicated that the complexity of astrocytes is 

significantly reduced in MD-3d rats but enhanced in MD-10days rats (p < 0.001, 1-

way ANOVA, Tukey HSD). No change was observed among the groups for 

contralateral hemisphere (p > 0.1, 1-way ANOVA, Tukey HSD). Besides, a group-

wise inter-hemispheric comparison also confirmed the reduced complexity in MD-3d 

and increased complexity in MD-10d rats (p < 0.001, Paired t-test) (Fig. 28A, C) 

(Tab. 13). 

The astrocytic complexity in Au1 cortex was neither significantly changed among 

the groups (MD-3days vs MD-10days vs Control) (p > 0.3, 1-way ANOVA, Tukey 

HSD) nor between the hemispheres (p > 0.2, Paired t-test) (Left vs Right) within 

individual groups (Fig. 28B, D) (Tab. 13). 

In order to check that the change in complexity of astrocytes was either due to 

primary or ramified processes, the mean number of primary processes was also 

quantified employing the same GFAP stained astrocytes. No significant changes 

were observed in mean number of primary processes among the groups (p > 0.3, 1-

way ANOVA, Tukey HSD) and also between the hemispheres within individual 

group (p > 0.2, Paired t-test)  (Tab. 14) for both LEnt (Fig. 28E)  and Au1(Fig. 28F)  

. 
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Fig. 28: Effect of MD on the 

morphology of astrocytes. 

The complexity of astrocytic 

cytoskeleton was analyzed by 

performing the Sholl analysis on glial 

fibrillary acidic protein (GFAP) stained 

astrocytes in LEnt (lateral entorhinal 

cortex) and Au1 of Ip (ipsilateral) and Co 

(contralateral) hemispheres. Graphs (A) 

number of intersections (C) mean 

number of intersections present that in 

ipsilateral LEnt complexity of astrocytic 

cytoskeleton was reduced in MD-3d but 

increased in MD-10d (n=42 astrocytes 

from 6 rats/each group. *p < 0.001, one-

way ANOVA, Tukey HSD. $p < 0.001 

ipsi- vs contralateral, paired t-test. 

Graphs (B) number of intersections (D) 

mean number of intersections in Au1. 

Graphs (E) and (F) presents number of 

primary processes of the same astrocytes 

used for Sholl anaysis in LEnt and Au1 

respectively. No significant change was 

seen among the groups and (*p > 0.3, 

one way ANOVA, Tukey HSD) and 

between hemispheres (
$
p > 0.2 ipsi- vs. 

contralateral paired t-test) for both LEnt 

and Au1. Data represented as mean ± 

SEM. 
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4.7. Enlargement of astrocytes 

The volume of astrocytes was measured and compared bilaterally in LEnt of control 

(n = 5), MD-3d (n = 7) and MD-10d (n = 7) rats using Golgi-impregnated astrocytes. 

For ipsilateral LEnt, the mean volume in control rats was 1534.7 ± 65.8, in MD-3d 

was 2305.2 ± 50.2 and MD-10d was 1706.7 ± 36. The volume of astrocytes was 

found to be increased in ipsilateral LEnt by 50% in MD-3d and 11% in MD-10d rats 

(p < 0.001, 1-way ANOVA, Tukey HSD). No significant change was observed 

among the groups in contralateral hemisphere (p > 0.5, 1-way ANOVA, Tukey 

HSD). The enlargement of astrocytes in LEnt in both Md-3d and 10d was further 

validated via group-wise inter-hemispheric comparison (p < 0.01, Paired t-test) (Fig. 

29A) (Tab. 15). 

Golgi stained astrocytes were used 

to analyze the volume of 

individual astrocytes.  Graphs 

present the mean volume of 

astrocytes in monocularly deprived 

(MD) and control (CTR) rats in 

ipsi (Ip) and contralateral (Co) 

LEnt (b) and Au1 (c). The volume 

of astrocytes in ipsilateral LEnt in 

Md-3d (n=7) was significantly 

increased in comparison to both 

MD-10d (n=7) and control (n=5) 

(*p < 0.001, one way ANOVA, 

Tukey HSD. $p <0.01 ipsi- vs 

contralateral; paired t-test). No 

significant difference was seen for 

Au1 (*p > 0.1, one-way ANOVA, 

Tukey HSD. $p > 0.2 ipsi- vs. contralateral; paired t-test). Data represented as mean ± SEM. 

 

Next, we assessed the swelling of astrocytic soma using S100ß stained slices in LEnt 

and Au1 of both hemispheres. In ipsilateral LEnt mean volume of the soma was 

330.81 ± 6.31 for control rats (n = 10), 383.94 ± 16.59 for MD-3d (n = 5) and 327.20 

± 9.57 for MD-10d (n = 6) rats. The data indicates 19.5% increase in MD-3d rats (p 

< 0.01, 1-way ANOVA, Tukey HSD). No increase was seen in MD-10d rats and also 

for contralateral LEnt (p > 0.1, 1-way ANOVA, Tukey HSD) (Fig. 30A) (Tab. 16). 

Additional group-wise inter-hemispheric comparison also fortified significant 

enlargement of astrocytic cell body in MD-3d rats (p = 0.001, Paired t-test).  
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S100ß stained astrocytes were 

employed to analyze the 

volume of astrocytic soma. 

Graph presents the volume of 

astrocytic soma in 

monocularly deprived (MD) 

and control (CTR) rats in ipsi 

(ip) and contralateral (co) 

hemispheres of LEnt (A) and 

Au1 (B). The volume of 

astrocytic soma in ipsilateral 

LEnt in Md-3d (n=5) was 

significantly increased 

relative to MD-10d (n=6) and 

control (n=10) (*p < 0.01, 

one way ANOVA, Tukey 

HSD. $p = 0.001 ipsi- vs. 

contralateral; paired t-test). No significant difference was seen for Au1 (*p > 0.7, one way 

ANOVA, Tukey HSD. $p > 0.4 ipsi- vs contralateral; paired t-test). Data represented as mean 

± SEM. 

 

Further in Au1 cortex, the volume of astrocytes and astrocytic soma was neither 

significantly changed among the groups (MD-3days vs MD-10days vs Control) (p > 

0.1, 1-way ANOVA, Tukey HSD) nor between the hemispheres (Left vs Right) (p > 

0.2, Paired t-test) within individual groups (Fig. 29, 30B) (Tab. 15, 16). 

4.8. Arc expression 

The Arc expression was measured by quantifying the density of Arc
+
 cells for 

estimation of neuronal activation (Guzowski et al., 1999) and synaptic plasticity 

(Gao et al., 2010; Hayashi et al., 2012; Shepherd et al., 2006). We have compared the 

density of Arc
+
 in LEnt and Au1 of each hemisphere among control (n = 8), MD-3d 

(n = 5) and MD-10d (n = 5) rats. Quantification revealed the mean number of Arc
+
 

cells in ipsilateral LEnt in control rats was 90454.5 ± 5409.1, in MD-3d was 

114520.2 ± 2717.3 and in MD-10d was 93013.5 ± 4352.3. The number of Arc
+
 cells 

in MD-3d group was significantly increased in the ipsilateral hemisphere (p < 0.05, 

1-way ANOVA, Tukey HSD) while no significant changes were observed in the 

contralateral hemisphere and in MD-10d group (p > 0.2, 1-way ANOVA, Tukey 

HSD) (Fig. 31A) (Tab. 17). An additional group-wise inter-hemispheric comparison 

confirmed increased Arc-expression in MD-3d rats (p = 0.036, Paired t-test). 
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Graphs present the density of 

Arc+ cells in monocularly 

deprived (MD) and control (CTR) 

rats in ipsi (Ip) and contralateral 

(Co) of LEnt (A) and Au1 (B). 

The Density of Arc+ cells was 

significantly increased in 

ipsilateral LEnt of MD-3d rats 

(n=5) with respect to MD-10d 

(n=5) and Control (n=8) rats (*p 

< 0.01, one-way ANOVA, Tukey 

HSD. $p < 0.05 ipsi- vs. 

contralateral; paired t-test). No 

significant difference was seen 

for Au1 (*p > 0.8, one way 

ANOVA, Tukey HSD. $p > 0.2 

ipsi- vs contralateral; paired t-

test). Data represented as mean ± SEM. 

 

For Au1, no significant changes had been seen in Arc
+
 cells among the groups (p > 

0.8, 1-way ANOVA, Tukey HSD) and also between the hemispheres (p > 0.2, Paired 

t-test) (Fig. 31B) (Tab. 17). 

4.9. Correlation of DBM and astrocytic enlargement 

While DBM and microscopic analysis of astrocytic enlargement provide a 

compelling evidence for changes in the brain structure after MD, we sought to 

further quantify the relationship between DBM and astrocytic enlargement. For this 

purpose, we first multiplied the mean astrocyte territorial volume (VM) of control rats 

(1534.7 µm³, Tab.15) by shrinkage factor (0.35, Section 3.13) and then added the 

resulting value (VS) in VM to calculate the normalized volume of astrocytes (VN).  

VN = VS + VM 

VN = (1534.7* 0.35) + 1534.7 = 2072 µm³ = 2.072 x 10
-6 

mm³/cell 

Next, we multiplied the normalized volume of astrocytes (VN) with the density of 

astrocytes (NV) (estimated by stereological counting S100ß
+
, 35309.3 cells/mm³, 

Tab. 9) to quantify the volume fraction of astrocytes (VF). 

VF = VN * NV 
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VF = 35309.3 cells/mm
3

 * 2.072 x 10
-6 

mm
3
/cell = 0.073 

The estimated volume fraction of astrocytes in LEnt was 7.3%. Fifty percent increase 

in astrocytic volume can produce 3.65% swelling in overall volume of LEnt (Fig. 

32).  

 

Via DBM analysis, we have found 6.1% swelling in LEnt and astrocytic enlargement 

contributed 60% to produce this GM swelling (Fig. 33).  
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Fig. 33: Contribution of astrocytic 

enlargement in GM swelling of 

LEnt. 

The enlargement of astrocytic 

territory (En-Astro) contributed 60% 

to produce GM swelling in LEnt 

detected by MRI-DBM analysis at 

3rd of MD. 

Fig. 32: volume fraction of astrocytes in LEnt. 
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5. Discussion 

Monocular deprivation (MD) complemented by MRI and microscopic analyses 

enabled us to characterize and relate the structural and functional basis of perceptual 

learning. We found that MD of left eye resulted in visual perception learning of 

undeprived right eye [measured as an increase in visual acuity (VA) and contrast 

sensitivity (Greifzu et al., 2011; Lehmann and Löwel, 2008; Prusky et al., 2006)] and 

temporal volume changes in the visual cortex (V1B, V2L), medial temporal lobe 

(Lateral entorhinal cortex [LEnt]) and cerebellum (paramedian lobule [PML]). 

Additionally, it was observed that the learning curve (increase in VA/day) correlated 

positively only with the time course of volume changes in the medial temporal lobe 

(MTL) at all-time points, suggesting MTL as a chief brain network for adaptation 

from binocular to monocular perception. Since the structural and functional brain 

reorganizations are assumed to be closely linked at every level and the events at 

neuronal and synaptic level are considered as functional hallmarks of learning, our 

data revealed astrocytes as the key structural determinant of learning. 

Learning and memory are assumed to be registered and stored in the form of 

functional and structural changes in synaptic efficiency (Black et al., 1990; Hebb, 

1949; Kleim et al., 1996). This processing is achieved through several mechanisms 

that involve generation of coincident rhythmic activity (Huerta and Lisman, 1993), 

long-term potentiation (LTP) (Whitlock et al., 2006), remodeling of synaptic 

networks (Chklovskii et al., 2004) and growth of new spines (Yuste and Bonhoeffer, 

2001). Spines encompass the postsynaptic portion of glutamatergic synapses (Kasai 

et al., 2010). Spines are highly dynamic, their generation, turnover and stabilization 

depend on the sensory input (Comery et al., 1996). An increasing body of evidences 

specifies the structural rearrangements of spines following exposure to different 

experiences and learning paradigms (Comery et al., 1996; Keifer et al., 2015; 

Lamprecht et al., 2006; Lee et al., 2007; Leuner et al., 2003; O'Malley et al., 2000) 

that complement with synapse formation (Holtmaat et al., 2005; Okabe et al., 2001). 

A newly generated spine, the physical embodiment of a ‘silent synapse,’ works as a 

seed for connection between neurons (Kasai et al., 2010) and repetitive stimuli 

strengthens these connections and results in maturation and enlargement of spines 

(De Roo et al., 2008)  while the rarely stimulated spines are pruned or eliminated 
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over time (Holtmaat and Svoboda, 2009; Zhou et al., 2004). Our data support these 

findings by showing an enlarged pool of both immatured and matured spines during 

the initial phase but only of matured spines on the later phase of MD (Fig. 26), 

confirming that stable connections are long lasting  (Holtmaat and Svoboda, 2009; 

Holtmaat et al., 2005; Yasumatsu et al., 2008). However due to technical limitations, 

we could not analyze the turnover at individual spine level. Recently, it has been 

shown that dendritic spine density may be the cellular mechanism that underlies the 

learning associated changes in GM that was detected by voxel-based morphometry 

(Keifer et al., 2015). But, learning induced structural changes are transient in nature 

and persist only during the period of  learning (Boyke et al., 2008; Draganski et al., 

2004; Draganski et al., 2006; Driemeyer et al., 2008; Taubert et al., 2010). If spine 

rearrangement is the basis of these structural changes in brain, then it must set back 

to baseline parallel to GM. To answer this question, we quantified spine density 

during GM swelling and also when it reversed to baseline and an increased spine 

pool was seen at both time points. However, the density was significantly increased 

during swelling and only 48% of the enhanced spine pool reversed along with GM 

(Fig. 25). Since the major part of enhanced spine pool persisted after the reversal of 

GM swelling, suggesting that spine rearrangement may contribute to but is not 

necessarily a major cause of morphometry based structural changes.  

Carpenter-Hyland et al., (2010) showed an increased Arc expression  only in the 

learning relevant area in rats that had just learned the tone detection task and 

emphasized Arc as an intrinsic factor of learning. Our results support and augment 

these findings by showing an elevated Arc expression only in the target region 

(LEnt) in MD rats (Fig. 31). Additionally, it was observed that enhancement in Arc 

expression was only restricted during swelling and no change in expression was seen 

when GM reversed back to baseline, pointing out a strong correlation of Arc 

expression  with  learning associated structural changes. Arc is a marker for 

enhanced neuronal activation (Guzowski et al., 1999) as well as synaptic plasticity 

(Gao et al., 2010; Hayashi et al., 2012; Shepherd et al., 2006).  Astrocytes are 

considered essential partners in the maintenance of neuronal activity (Pellerin, 2005; 

Simard and Nedergaard, 2004; Zagami et al., 2005) synapse formation, synaptic 

transmission, and plasticity (Eroglu and Barres, 2010). To carry out these diverse 

tasks, astrocytes rely on their elaborate architecture and undergo morphological 
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changes during synaptic plasticity (Bernardinelli et al., 2014; Hawrylak et al., 1993; 

Klintsova et al., 1995; Perez-Alvarez et al., 2014) and neuronal activation (Ostby et 

al., 2009; Ransom et al., 1985). We confirmed these findings by showing temporal 

astrocytic enlargement analogous to Arc expression. Additionally, it was seen that 

astrocytic enlargement occurred in parallel to GM structural changes. We observed 

that increase in the astrocytic volume (astrocytic territory) was ≈50% during swelling 

and ≈11% when GM set back near to baseline level (Fig. 29). Besides, astrocytes 

were found to occupy approximately 7.3% of the volume of the EC, a figure 

consistent with previous estimates of cortex, (Genoud et al., 2006; Jones and 

Greenough, 1996; Thomas et al., 2012) . Notably, 50% increase in the 7.3% volume 

fraction can produce 3.65% swelling (Fig. 32). By MRI and DBM, we have found 

6.1% swelling in the LEnt (Fig. 22C), hence enlargement of astrocytes explains 60% 

contribution (Fig. 33), signifying astrocytic hypertrophy underlie the main 

contributor for the learning associated GM structural changes seen by MRI and DBM 

and follows from the results by Kleim et al. (2007) who showed hypertrophy of 

astrocytes only during the period of motor learning but not 28 days later. Astrocytic 

enlargement might be the outcome of 2 factors (i) swelling following neuronal 

activation (Ostby et al., 2009) (ii) formation of the new processes to ensheath the 

newly formed synapses (Viola et al., 2009).  Additionally at 10
th

 day of MD, about 

0.7% swelling in LEnt still persisted and the 11% enlargement in astrocytes explains 

this swelling. Astrocytes are star-shaped glia and the soma of a typical astrocyte 

accounts for only 2% of its total volume whilst the processes (primary, ramified and 

thin) represent rest (Wolff J, 2004).  Around 20% swelling in the astrocytic soma 

was also observed during the significant GM swelling (Fig. 30), explaining the 40% 

enlargement of astrocytes during GM swelling. This swelling of cell body may 

explain the functional relevance of astrocytes during enhanced neuronal activation 

(as represented by our Arc data, Fig. 31). Astrocytes are responsible for maintaining 

K
+
 homeostasis during neuronal firing. A brief increase in neuronal activity results in 

a transient increase in K
+
 efflux from the neuron to the extra cellular space (ECS) 

(Ballanyi et al., 1987; Dietzel et al., 1989; Macvicar et al., 2002). The effective 

clearance of K
+
 is essential for normal brain functioning otherwise it will enhance 

neuronal excitability and increase the probability of epileptic episodes and major sink 

of excess ECS- K
+
 is the surrounding astrocytes (Lux et al., 1986; Somjen, 2004). 

This influx of potassium is accompanied by anions (Walz and Hertz, 1983) and 
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causes the set-up of an osmolarity gradient that drives the water from the ECS into 

the astrocytes (Ransom et al., 1985; Walz and Hinks, 1985) and leads to the 

astrocytic swelling (Macvicar et al., 2002; Ostby et al., 2009). The astrocytic 

enlargement may also be contributed by the cytoskeleton monomers, increased 

expression of synaptogenic molecule that instruct the synapse formation and 

development (Clarke and Barres, 2013) such as apolipoprotein E (Goritz et al., 2005; 

Mauch et al., 2001), thrombospondins (Christopherson et al., 2005; Risher and 

Eroglu, 2012) and hevin (Kucukdereli et al., 2011). However, these synapses are 

silent (lacking AMPA receptors) and to convert the silent synapses into the 

functional synapses, astrocytes further secrete glypicans (Allen et al., 2012). As no 

swelling in the soma was seen after the reversal of GM, so persistent enlargement in 

EC may solely be due to the formation of new processes, further confirmed by the 

enhanced ramification of astrocytes analyzed by the cytoskeleton-based Sholl 

analysis that revealed morphologically simple astrocytes during GM swelling but 

more complexed after reversal, suggesting astrocytic plasticity during GM volume 

changes (Fig. 28).  

According to the, “tripartite synapse concept” astrocytes are an integral part of 

synapses (Ho et al., 2011) and enhanced synaptic plasticity demands a counter 

ramification of astrocytic processes to ensheath the newly formed synapses.  The 

ramification of astrocytic processes requires a reduction in the cytoskeleton content. 

Glial fibrillary acidic protein (GFAP) along with vimentin constitutes the major 

cytoskeleton entity of astrocytes (Bignami et al., 1972; Eliasson et al., 1999b; Eng et 

al., 1971) and gives stability to astrocytic processes (Pekny et al., 1999; Pekny and 

Wilhelmsson, 2006). GFAP exist as phosphorylated and de-phosphorylated forms in 

the astrocytes (Middeldorp and Hol, 2011; Rodnight et al., 1997). Only 

phosphorylated GFAP polymerize with vimentin to make the astrocytic cytoskeleton 

(Takemura et al., 2002). The phosphorylation of GFAP depends on the Ca
2+

 conc. of 

astrocyte (Rodnight et al., 1997; Vinade et al., 1997). During activation, neurons 

generate Ca
2+

 waves in the astrocytes locally (Perea and Araque, 2005; Theodosis et 

al., 2008) that would dephosphorylate GFAP (Rodnight et al., 1997) and make 

astrocytic processes flexible (Theodosis et al., 2008) to ramify to give rise the new 

processes for ensheathing the newly generated synapses and results in 

morphologically simple astrocytes due to the lack of cytoskeleton during the highly 
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synaptic period (Missler et al., 1994). After stabilization of neuronal activity, GFAP 

would rephosphorylate (Rodnight et al., 1997) and polymerize with vimentin to make 

the cytoskeleton of newly formed astrocytic processes and result in morphologically 

complex astrocytes (Viola et al., 2009) (Fig. 34). Our data confirm these 

observations by showing the morphologically simple GFAP stained astrocytes during 

the neuronal activation and synaptic plasticity but more complexed when the 

plasticity was over and this complexity is attributed by formation of the ramified 

processes as no change had been seen in the number of primary processes which 

directly emerged out of the soma (Fig. 28). . Perez-Alvarez et al. (2014) also showed 

the structural rearrangements of astrocytic processes during the enhanced synaptic 

activity. However due to technical limitations, we could analyze only GFAP stained 

Dephosphorylated GFAP,  Phosphorylated GFAP, Vimentin, 

Increased Ca2+ conc.,   Ca
2+

 Baseline  Ca2+ conc. Ca
2+

 

Fig. 34: A proposed model for cytoskeleton plasticity during the ramification of 

astrocytic processes. 

Ca2+ regulates the dynamic equilibrium between the phosphorylated and dephosphorylated 

state of GFAP which in turn determine the cytoskeleton stability. Increased Ca2+ 

concentration (conc.) during enhanced synaptic plasticity leads to dephosphorylation of 

GFAP which results in deploymerization of intermediate filaments (Vimentin and GFAP). 

Consequently, astrocytic processes lack cytoskeleton and become flexible to ramify. When 

synaptic plasticity is over and Ca2+ conc. reverses to baseline, GFAP starts phosphorylating 

and polymerizing with vimentin to form the cytoskeleton entity of newly formed processes 

which ensheath the recently generated synapses.  
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astrocytic processes and the magnification of light microscope did not allow us to 

extend our analysis to the fine astrocytic processes which are in contact with 

synapses  

Learning is also thought to be regulated by neurogenesis in the adult mammalian 

brain. Accumulating evidence implies that promotion or suppression of hippocampal 

neurogenesis could correspond with improvement or impairment in learning and 

memory performances, respectively (Feng et al., 2001; Kempermann et al., 1997; 

Shors et al., 2002). For instance, enriched environment enhanced neurogenesis 

(Kempermann et al., 1997), which was paralleled by better spatial learning 

performance in the Morris water maze task (MWM) in rats (Bruel-Jungerman et al., 

2005; Nilsson et al., 1999) as well as in mice (Iso et al., 2007).  van Praag et al. 

(1999) reported that 3-month-old female C57Bl/6 mice subjected to voluntary wheel 

running for 43–49 days displayed promoted neurogenesis; meanwhile, LTP in the 

CA1 and  their learning performance in the MWM task were both improved. 

Contrary to these results, we found no link between neurogenesis and learning 

associated GM swelling in LEnt. To access neurogenesis, the rats were injected with 

5′-Bromodeoxyuridine (BrdU) immediately after MD and no alternation in the 

number of newly born cells was seen (Fig. 23). A possible explanation would be that 

previous studies focused on hippocampal-dependent learning that is distinctly 

influenced by newly born neurons (Cameron and Glover, 2015; Kee et al., 2007; 

Lemaire et al., 2000) while MD associated perceptual learning might not be 

dependent on hippocampus (as we did not found any structural changes in the 

hippocampus following MD) and hence showed no correlation with neurogenesis as 

already analyzed by Gould et al. (1999a) for hippocampal independent learning task. 

Rats were trained on a cue test in the water maze that does not require the 

hippocampus, showed no change in the number of newly born cells while a 

significant increase in the numbers of newly generated neurons was seen for rats 

subjected to place test in the water maze that requires the hippocampus. Additionally, 

we observed a trend towards reduction in the density of newly born cells in MD rats 

during GM swelling. Synonymous results were seen for the density of S100ß stained 

astrocytes (Fig. 24). Overall, we found a ≈5-6% reduction in the density of BrdU and 

S100ß stained cells during ≈6% GM swelling in LEnt. Moreover, the variation in the 

density of S100ß stained cells was reversed along with structural changes in GM. As 
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previously described, macrostructural brain plasticity correlates with an alternation in 

the astrocyte density (Vernon et al., 2014), and hence it is reasonable to postulate that 

the reduction in the cell density represents morphometry based GM structural 

changes at the histological level. 

Learning is a physical phenomenon (Zull, 2002) and is accompanied by a chemical 

change at the synapse level (Black et al., 1990; Kleim et al., 2002) to reorganize the 

brain circuits and this remodeling encodes new experiences and enables behavioral 

change. With advancement in MRI (MRI) and morphometric analysis, it is possible 

to analyze the learning specific structural reorganization in the brain. People with 

different expertise and experiences undergo changes in the different areas of brain 

(Aydin et al., 2007; Gaser and Schlaug, 2003; Maguire et al., 2000; Maguire et al., 

2006; Mechelli et al., 2004). Studies with longitudinal morphometry  have shown 

that learning related GM changes can be seen within short duration after initiating the 

learning and only persist during the period of training (Boyke et al., 2008; Draganski 

et al., 2004; Draganski et al., 2006; Driemeyer et al., 2008) and confirmed the 

functional importance of the distinct brain regions during the different phases of 

learning (Taubert et al., 2010). The learning curve represents an improvement in 

one‘s skills and response over the time (Keifer et al., 2015; Kleim et al., 2007; 

Taubert et al., 2010). We used MD to analyze reorganization in the  brain during 

visual perceptual learning and learning outcome was observed as an enhanced 

functioning of un-deprived right eye indicated by increased visual acuity and contrast 

sensitivity (OKR sensitivity)  through undeprived eye as reported in the literature 

(Greifzu et al., 2011; Lehmann and Löwel, 2008; Prusky et al., 2006). Our 

longitudinal as well as cross-sectional analyses present maximum increase in the 

OKR sensitivity immediately after MD indicating the importance of the initial phase 

of MD for the OKR sensitivity enhancement (Fig. 15, 16, 20, 21). Further, it was 

observed that daily testing with an optometer amplified the VA increase following 

MD and the increase in VA was significantly more when MD was coupled with daily 

optometry (Fig. 18) confirming that repetitive exposure to visual stimulus enhanced 

perceptual learning (Saarinen and Levi, 1995). However, optometry could not induce 

any change in the OKR sensitivity in the absence of MD (Fig. 19). 

 The previous studies indicate the role of visual cortex in the OKR plasticity 

following MD (Greifzu et al., 2011; Lunghi et al., 2015; Prusky et al., 2006). 
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However, Prusky et al. (2006) removed the visual cortex bilaterally and still 

observed a slight increase in VA for the initial 2 days following MD, pointing out the 

role of another brain network specifically for initiating the OKR sensitivity 

enhancement immediately after MD. We observed temporal volume changes in the 

visual cortex (V1B, V2L), medial temporal lobe (Lateral entorhinal cortex [LEnt]) 

and cerebellum (paramedian lobule [PML]) (Fig. 22) According to Zull (2002), 

learning starts with the gathering of sensory experiences through the sensory cortices 

which receive input from the surrounding world in the form of vision, hearing, touch, 

position, smell and taste. The next phase is reflection which involves the integration 

of the sensory information received during the gathering phase. The reflection phase 

engages the temporal lobe and without reflection learning will be severed and 

shallow.  The last stage of learning is active testing which is a physical process that 

allows the brain to make intellectual concrete by translating mental ideas into actions 

and depends on motor areas (Zull, 2002). MD of the left eye blocked its visual input 

to the brain and only source for visual stimulus was then right eye, as a result, the 

corresponding ipsilateral binocular visual cortex (V1B) became activated and this 

activation was recorded as temporal structural plasticity. The importance of visual 

cortex in MD-based plasticity has been well- established (Greifzu et al., 2011; 

Lunghi et al., 2015; Prusky et al., 2006). Subsequently, the brain started reflecting 

and concentrating on the right eye as a sole source of gathering visual perception 

from the outside world by engaging the LEnt. This resulted in the transient swelling 

that was mainly contributed by the astrocytic enlargement; consequently, the OKR 

sensitivity of right eye increased. LEnt is a key component of the medial temporal 

lobe (MTL) that was previously studied crucial for learning and memory (Draganski 

et al., 2006; Ferbinteanu et al., 1999; Murray et al., 2007; Squire et al., 2004). Given 

from literature evidence, the stimulation of the entorhinal cortex enhanced spatial 

learning (Suthana et al., 2012). Besides, the entorhinal cortex is a chief gateway to 

the hippocampus and has been known to play a crucial role in cognition and 

navigation (Deshmukh and Knierim, 2011; Ferbinteanu et al., 1999; Hafting et al., 

2005; Zhu et al., 1995).  When the reflection was over and OKR sensitivity became 

stable, the brain might have decided to restrict itself to the right eye as the visual 

source, and as a result, the projections from the left eye started deteriorating and 

resulted in the shrinkage in visual cortices corresponding to the left eye. The next 

phase was to translate this decision (using right eye to perceive visual stimulus) into 
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actions and modify the behavior according to monocular vision by initiating 

reorganization as swelling in  PML of cerebellum that has already been found to be 

important for the motor learning and balancing (Boyden et al., 2004; Christian and 

Thompson, 2003; Kleim et al., 2007). 
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6. Conclusion and Outlook 

Overall our study established first evidence regarding the complete profile of 

macrostructural neuroplasticity associated with MD-based visual perceptual learning 

and showed glial hypertrophy as the major cellular mechanism underlying these 

structural changes. In summary, over a period of 10 days MD, we found temporal 

volume changes in the visual cortex (V1B, V2L) medial temporal lobe (Lateral 

entorhinal cortex [LEnt]) and cerebellum (paramedian lobule [PML]). The enhanced 

functioning of the un-deprived eye was monitored by measuring the visual acuity and 

contrast sensitivity and we observed that the learning curve (increase in VA/day) 

correlated positively only with the time course of volume changes in LEnt at all-time 

points, on this basis we selected LEnt for elucidating the cellular substrates of GM 

volumetric changes. Using cross-sectional microscopic analyses, we observed 

elevated Arc expression, an enhanced spine pool (both immatured and matured 

spines) and significantly enlarged but morphologically simple astrocytes during GM 

swelling at the 3
rd

 day of MD that was further accompanied by a reduced density of 

astrocytes and newly born nuclei. The swelling in LEnt was reversed towards the 

baseline until the 10
th

 day of MD. The Arc expression, density and hypertrophy of 

astrocytes also reversed to baseline along with GM but the spine pool of matured 

spines persisted. Besides, we observed that volume changes in astrocytes went 

parallel to GM and explained 60% contribution, signifying astrocytic hypertrophy 

underlie the main factor for the morphometry based GM swelling.  Moreover, we did 

not see any increase in the density of newly born nuclei and astrocytes, representing 

that angio as well as neuronal and glial genesis did not contribute in DBM based 

swelling. In addition, analysis of the primary auditory cortex (Au1), which was 

selected as the control region, showed no significant difference in the microscopic 

analyses, signifying the observed structural and functional alternations were learning 

specific. Therefore, by showing a significant correlation between the Arc expression, 

astrocytic enlargement, and DBM signal in the LEnt, these results fill the huge gap in 

our current understanding of cellular substrates of morphometry based structural 

changes.  

Additionally, our data allows us to present a theoretical model of the microscopic 

basis of learning based macroscopic structural rearrangements. MD (External 

sensory stimulus) invokes perceptual learning in rats that stimulates LEnt. This 
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stimulation induces neuronal firing and synaptic plasticity (represented by Arc 

expression) that enhances the spine pool and also demand counter-morphological 

changes in astrocytes. Consequently, astrocytes become plastic and enlarged and 

result in the expansion of LEnt (seen via morphometry). When learning is ended, 

neurons return to baseline activity and the synaptic and spine rearrangement is also 

over. As a result, astrocytes retain their original volume with increased structural 

complexity that ultimately leads to a tendency of increased volume of LEnt in MD 

rats relative to controls (Fig. 35). 

 

Our data present astrocytic enlargement as the major underlying mechanism of 

transient brain structural plasticity that is detected by MRI and DBM; and swelling of 

astrocytic soma explains a small proportion of that enlargement, signifying the future 

elucidation of rearrangement of fine astrocytic processes using super-resolution 

microscopy (dSTORM) to understand their possible contribution. Simultaneous 

variations in GM volume, Arc expression (neuronal activation and synaptic 

plasticity) and astrocytic volume and morphology may explicate a plausible 

mechanism; follow-up work should focus on providing further evidence for this 

Astroglia GFAP-Cytoskeleton Neuron Dendritic Spine 

 Baseline

Perceptual-learning 

 Post-learning

A schematic representation of cellular structures before MD (Baseline). MD induces 

sensory learning through the undeprived eye which stimulates LEnt. This stimulation results 

in neuronal firing and synaptic plasticity. Subsequently spine rearrangement and counter 

morphological changes in astrocytes take place. Astrocytes swell and results in expansion of 

LEnt (perceptual learning). When learning through the undeprived eye ends, neurons return 

to baseline activity, spine and synaptic rearrangement is also over. Consequently, astrocytes 

retain their original volume with an increased complexity (Post-learning). 

Fig. 35: A proposed theoretical model for cellular underpinnings of the volume 

changes during monocular deprivation based (MD) perceptual learning. 
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correlation, including experimental manipulations to establish causality. Importantly, 

shift in the astrocytic volume accounts 60% of the story and further attention must be 

paid towards other possible structural changes that can co-occur, most likely blood 

vessels dilatation. It is worthy to note that vessels dilate during neuronal firing 

(Filosa et al., 2006). Understanding of the precise mechanisms of learning associated 

structural plasticity and its functional correlates leads to the development better 

strategies to enhance learning capabilities of patients suffering from learning and 

cognitive defects and hopefully to translate these into improved quality of life. 
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8. Appendix 

 

Tab.5: Summary of major results for visual acuity change and statistical significance. 

 

 

 

 

 

 

 

 

 

 

Group Study N Baseline Maximum % Days p Figure 

Test study T 5 0.222 ± 0.0028 0.286 ± 0.0056 29 7 <0.05 15A 

MD-OPT-MRI L 24 0.208 ± 0.0022 0.285 ± 0.0032 37 9 <0.05 16A 

MD-MRI L 10 0.230 ± 0.0005 0.286 ± 0.0013 24 10 <0.05 17 

OPT-MRI L 20 0.230 ± 0.0004 0.230 ± 0.0004 0 9  19A 

MD-3d C.S 20  0.217 ± 0.0037 0.266 ± 0.0039 23 3 <0.05 20A 

MD-10d C.S 5 0.196 ± 0.0043 0.258 ± 0.0071 31 10 <0.05 21A 

Groups are listed (left column) and arranged according to study: Test (T), Longitudinal (L), and 

Cross-sectional (C.S). The number of animals in a group (N), the baseline spatial frequency 

sensitivity with SEM (Baseline), the maximum sensitivity over the course of the experiment with 

SEM (Maximum), the percentage change between baseline and maximum sensitivity (%), the 

number of days after MD and baseline MRI (Days), p values of repeated-measures ANOVAs on 

ranks for the group (p), to figure number and panel of the experiment (Figures) are listed for each 

group in columns. 
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 Tab. 6: Summary of major results for contrast sensitivity change and statistical significance. 

 

Group Study N Baseline at 

0.044 

Maximum at 

0.044 

% Days p Figure 

Test study T 5 1.97 ± 0.0081 2.22 ± 0.0434 12 7 <0.05 15B 

MD-OPT-MRI L 24 1.96 ± 0.0143 2.14 ± 0.0205 9 9 <0.05 16B 

OPT-MRI L 20 2.06 ± 0.0021 2.06 ± 0.0021 0 9  19B 

MD-3d C.S 20 1.97 ± 0.0159 2.13 ± .0261 8 3 <0.05 20B 

MD-10d C.S 5 1.85 ± 0.0134 2.02 ± 0.0197 9 10 <0.05 21B 

Group Study N Baseline at 

0.061 

Maximum at 

0.061 

% Days p Figure 

Test study T 5 2.97 ± 0.0204 3.5 ± 0.0769 18 7 <0.05 15B 

MD-OPT-MRI L 24 2.84 ± 0.0266 3.25 ± 0.0348 14 9 <0.05 16B 

OPT-MRI L 20 2.95 ± 0.0042 2.95 ± 0.0042 0 9  19B 

MD-3d C.S 20 2.89  ± 0.0282 3.20± 0.0475 11 3 <0.05 20B 

MD-10d C.S 5 2.72 ± 0.0193 3.12 ± 0.0486 15 10 <0.05 21B 

Group Study N Baseline at 

0.089 

Maximum at 

0.089 

% Days p Figure 

Test study T 5 2.74 ± 0.0170 3.20 ± 0.0648 17 7 <0.05 15B 

MD-OPT-MRI L 24 2.67 ± 0.0185 3.04 ± 0.0233 13.8 9 <0.05 16B 

OPT-MRI L 20 2.71 ± 0.0043 2.71 ± 0.0043 0 9  19B 

MD-3d C.S 20 2.68 ± 0.0201 2.98 ± 0.0397 11 3 <0.05 20B 

MD-10d C.S 5 2.56 ± 0.0161 2.87 ± 0.0380 12 10 <0.05 21B 

Group Study N Baseline at 

0.119 

Maximum at 

0.119 

% Days p Figure 

Test study T 5 2.44 ± 0.0186 2.85 ± 0.0620 17 7 <0.05 15B 

MD-OPT-MRI L 24 2.46 ± 0.0109 2.79 ± 0.0164 13.4 9 <0.05 16B 

OPT-MRI L 20 2.45 ± 0.0026 2.45 ± 0.0026 0 9  19B 

MD-3d C.S 20 2.43 ± 0.0127 2.66 ± 0.0203 9.4 3 <0.05 20B 

MD-10d C.S 5 2.39 ± 0.0292 2.70 ± 0.0404 13 10 <0.05 21B 

Group Study N Baseline at 

0.150 

Maximum at 

0.150 

% Days p Figure 

Test study T 5 2.11 ± 0.0238 2.42 ± 0.0160 13 7 <0.05 15B 

MD-OPT-MRI L 24 2.12 ± 0.0055 2.35 ± 0.0120 11 9 <0.05 16B 

OPT-MRI L 20 2.10 ± 0.0016   2.10± 0.0016   0 9  19B 

MD-3d C.S 20 2.10 ± 0.0069 2.29 ± 0.0045 8.3 3 <0.05 20B 

MD-10d C.S 5 2.13 ± 0.0115 2.39 ± 0.0273 12.2 10 <0.05 21B 
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Tab. 7: DBM analysis and statistical significance. 

 

Area Hemisphere 

Coordinates p <0.05(FWE) p <0.001(uncorr) 

X Y Z p value 

cluster 

size p value 

cluster 

size 

LEnt* L -6.7 -8.4 -5.4 0.011 3 0.006 82 

V1B* L -4.5 -2.0 -7.0 0.011 3 0.004 95 

V2L* R 6.1 -2.9 -7.2 ns 
 

0.011 70 

PM** L -5.1 -6.4 -12.6 ns 
 

0.032 46 

* Initial swelling (MD3d > MD10d vs. CTR3d<CTR10d) 

** Late swelling (MD3d < MD10d vs. CTR3d > CTR10d) 

FWE: Familywise error test, ns: non-significant, uncorr: uncorrected. 

Tab.6: Groups are listed (left column) and arranged according to study: Test (T), Longitudinal 

(L), and Cross-sectional (C.S). The number of animals in a group (N), the baseline contrast 

sensitivity with SEM (Baseline), the maximum sensitivity over the course of the experiment 

with SEM (Maximum), the percentage change between baseline and maximum sensitivity (%), 

the number of days after MD and baseline MRI (Days), p values of repeated-measures 

ANOVAs on ranks for the group (p), to figure number and panel of the experiment (Figures) are 

listed for each group in columns. 

* Initial swelling (MD3d > MD10d vs. CTR3d<CTR10d) 

** Late swelling (MD3d < MD10d vs. CTR3d > CTR10d) 

FWE: Familywise error test, ns: non-significant, uncorr.: uncorrected. 
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Tab. 8: Density of BrdU
+
 cells and statistical significance. 

 

 

  

LEnt Left Right 
Left vs Right       

(Paired t-test) 

Control 6653.2 ± 332.47 6650.5 ± 231.96 0.737 

MD-3d 6208.7 ± 251.17 6678.2 ±  363.71 0.527 

p                       

(Between the groups) 

Student t-test 

C vs 3d : 0.16 

 

C vs 3d : 0.4  

Au1 Left Right 
Left vs Right       

(Paired t-test) 

Control 3212.1 ±  233 3313.13 ±  257.12 0.672 

MD-3d 3319  ±  316 3306.4 ±  246.74 0.726 

p                       

(Between the groups) 

Student t-test 

C vs 3d : 0.39 

 

C vs 3d : 0.493  

Abbreviations: MD: monocular deprivation, d: days, LEnt: Lateral entorhinal cortex, Au1: 

Primary auditory cortex. 
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Tab.  9: Density of S100ß
+
 astrocytes and statistical significance. 

 

 

 

 

 

LEnt Left Right 
Left vs Right       

(Paired t-test) 

Control 35309.3 ± 516.6 35072.6 ± 957 0.816 

MD-3d 33566.4 ± 920.4 35287.8 ± 722.2 0.149 

MD-10d 35431.2 ± 492.7 35502.9 ± 588 0.931 

p (Among the groups) 

1 way Anova         

(Turkey HSD) 

C vs 3d vs 10d : 0.131 

C vs 3d : 0.155 

C vs 10d : 0.989 

3d vs 10d : 0.173 

C vs 3d vs 10d : 0.94 

C vs 3d : 0.983 

C vs 10d : 0.935 

3d vs 10d : 0.987 

 

p (Between the groups) 

Student t-test 

C vs 3d : 0.048 

C vs 10d : 0.438 

3d vs 10d : 0.047 

C vs 3d : 0.439 

C vs 10d : 0.375 

3d vs 10d : 0.411 

 

Au1 Left Right 
Left vs Right       

(Paired t-test) 

Control   21420.4 ± 1028.6 22230.1 ± 1534.8 0.983 

MD-3d 21732.9 ± 922.7 22642 ± 901.2 0.405 

MD-10d         21804  ± 1163.4 23331 ± 1107 0.153 

p (Among the groups) 

1 way Anova         

(Turkey HSD) 

C vs 3d vs 10d : 0.840 

C vs 3d : 0.976 

C vs 10d : 0.828 

3d vs 10d : 0.931 

C vs 3d vs 10d : 0.819 

C vs 3d : 0.990 

C vs 10d : 0.819 

3d vs 10d : 0.886 

 

p (Between the groups) 

Student t-test 

C vs 3d : 0.048 

C vs 10d : 0.438 

3d vs 10d : 0.481 

C vs 3d : 0.407 

C vs 10d : 0.291 

3d vs 10d : 0.411 

 

Abbreviations: MD: monocular deprivation, d: days, LEnt: Lateral entorhinal cortex, Au1: 

Primary auditory cortex. 
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Tab. 10: Density of different types of spines on basal dendrites of pyramidal neurons and statistical significance in LEnt. 

 

                                                                                             

LEnt Left Right 

Spine Types Small Medium Large Mushroom Spiny Sum Small Medium Large Mushroom Spiny Sum 

Control (C) 35 ± 1.2 11.4 ± 0.4 5.1 ± 0.3 4.3 ± 0.3 4.3 ± 0.2 60 ± 1.1 38.3 ± 1.1 12.9 ± 0.4 5.8 ± 0.6 4.2 ± 0.3 4.1 ± 0.3 65.2 ± 1.4 

MD-3d (3d) 51 ± 2.1 19.6 ± 1.1 9.9 ± 1.1 7.6 ± 0.5 7 ± 0.6 94.8 ± 2.7 38 ± 2.0 12.1 ± 0.8 6.8 ± 0.7 4.3 ± 0.3 4.8 ± 0.5 66 ± 3.1 

MD-10d 

(10d) 
38.8 ± 0.5 16.6 ± 0.9 8.4 ± 0.7 7.6 ± 0.3 7 ± 0.6 78.3 ± 2.1 37 ± 1.9 13.3 ± 0.9 5.3 ± 0.6 4.8 ± 0.5 4 ± 0.4 64.3 ± 3 

1 way Anova (Turkey HSD) 

p: C vs 3d 

vs 10d 
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.801 0.572 0.425 0.479 0.314 0.892 

p: C vs 3d <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.995 0.76 0.626 0.988 0.412 0.972 

p C vs 10d 0.141 <0.001 0.005 <0.001 <0.001 <0.001 0.792 0.876 0.845 0.467 0.937 0.948 

p : 3d vs 

10d 

<0.001  0.042 0.321 0.996 0.998 <0.001 0.895 0.542 0.394 0.68 0.31 0.886 

Abbreviations: MD: monocular deprivation, d: days, LEnt: Lateral Entorhinal cortex. 
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Tab. 11: Density of different types of spines on basal dendrites of pyramidal neurons and statistical significance in Au1. 

 

Au1 Left Right 

Spine Types Small Medium Large Mushroom Spiny Sum Small Medium Large Mushroom Spiny Sum 

Control (C) 39.4 ± 1.4 14.1 ± 0.7 6.2 ± 0.2 5.5 ± 0.4 4.8 ± 0.3 70.0 ± 0.4 38.3 ± 1.1 13.3 ± 0.9 5.9 ± 0.2 5.2 ± 0.2 4.8 ± 0.1 67.6 ± 1.2 

MD-3d (3d) 41.1 ± 1.4 15.5 ± 0.8 6.3 ± 0.3 5.5 ± 0.2 4.3 ± 0.5 70.0 ± 2.1 37.7 ± 1.2 15.4 ± 0.8 7.1 ± 0.6 5.5 ± 0.2 4.3 ± 0.5 70.0 ± 2.1 

MD-10d 

(10d) 

39.7 ± 1.9 16.0 ± 0.8 6.9 ± 0.7 5.4 ± 0.1 5.1 ± 0.6 73.0 ± 2.9 37.7 ± 1.3 15.2 ± 1.4 6.2 ± 0.5 5.2 ± 0.7 5.3 ± 0.7 69.5 ± 3.7 

1 way Anova (Turkey HSD) 

p: C vs 3d 

vs 10d 
0.768 0.2 0.518 0.867 0.456 0.566 0.933 0.070 0.203 0.814 0.258 0.448 

p: C vs 3d 0.761 0.352 0.987 0.856 0.727 0.692 0.997 0.111 0.183 0.811 0.738 0.465 

p C vs 10d 0.988 0.228 0.520 0.955 0.424 0.593 0.927 0.130 0.861 0.994 0.563 0.619 

p : 3d vs 

10d 
0.855 0.973 

0.659 0.969 0.831 0.991 0.979 0.992 0.444 0.877 0.232 0.963 

Abbreviations: MD: monocular deprivation, d: days,  Au1: Primary auditory cortex. 
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Tab. 12: Statistical significance of different types of spines between the hemispheres. 

 

 

 

 

 

 

 

 

 

 

 

LEnt Left vs Right (Paired t-test) 

Spine 

Types 

Small Medium Large Mushroom Spiny Sum 

Control 0.134 0.051 0.159 0.591 0.726 0.015 

MD-3d <0.001 0.007 0.018 0.003 0.018 <0.001 

MD-10d 0.172 0.03 0.023 0.002 0.001 0.002 

Au1 Left vs Right (Paired t-test) 

Spine 

Types 

Small Medium Large Mushroom Spiny Sum 

Control 0.538 0.404 0.553 0.390 0.978 0.262 

MD-3d 0.184 0.737 0.245 0.627 0.947 0.330 

MD-10d 0.428 0.507 0.231 0.739 0.742 0.310 

Abbreviations: MD: monocular deprivation, d: days, LEnt: Lateral entorhinal cortex, Au1: 

Primary auditory cortex. 
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Tab. 13: Mean number of astrocytic intersections and statistical significance. 

 

LEnt Left Right 
Left vs Right       

(Paired t-test) 

Control 18.8 ± 0.4 17.7 ± 0.4 0.089 

MD-3d 16.1 ± 0.4 18.8 ± 0.3 <0.001 

MD-10d 21.4 ± 0.5 18.2 ± 0.5 <0.001 

p (Among the groups) 

1 way Anova 

 (Turkey HSD) 

C vs 3d vs 10d : < 0.001 

C vs 3d : < 0.001 

C vs 10d : < 0.001 

3d vs 10d : < 0.001 

C vs 3d vs 10d : 0.171 

C vs 3d : 0.147 

C vs 10d : 0.702 

3d vs 10d : 0.523 

 

Au1 Left Right 
Left vs Right       

(Paired t-test) 

Control 19.3 ± 0.43 20 ± 0.55 0.289 

MD-3d 19.1 ± 0.53 19.3 ± 0.6 0.779 

MD-10d 19.7 ± 0.65 19.8 ± 0.53 0.863 

p (Among the groups) 

1 way Anova 

 (Turkey HSD) 

C vs 3d vs 10d : 0.770 

C vs 3d : 0.951 

C vs 10d : 0.908 

3d vs 10d : 0.752 

C vs 3d vs 10d : 0.396 

C vs 3d : 0.657 

C vs 10d : 0.981 

3d vs 10d : 0.787 

 

Abbreviations: MD: monocular deprivation, d: days, LEnt: Lateral entorhinal cortex, Au1: 

Primary auditory cortex. 
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Tab. 14: Number of primary processes of astrocytes and statistical significance. 

 

 

 

 

 

 

 

 

LEnt Left Right 
Left vs Right      

  (Paired t-test) 

Control 9.1 ± 0.2 9.1 ± 0.3 0.887 

MD-3d 9.1 ± 0.3 9.0 ± 0.3 0.773 

MD-10d 9.6 ± 0.3 9.3 ± 0.2 0.558 

p (Among the groups) 

1 way Anova 

 (Turkey HSD) 

C vs 3d vs 10d : 0.343 

 C vs 3d : 0.991 

C vs 10d : 0.381 

3d vs 10d : 0.453 

C vs 3d vs 10d : 0.633 

C vs 3d : 0.955 

C vs 10d : 0.794 

3d vs 10d : 0.619 

 

Au1 Left Right 
Left vs Right      

  (Paired t-test) 

Control 8.2 ± 0.3 8.2 ± 0.24 0.897 

MD-3d 8.2 ± 0.24 8.1 ± 0.2 0.832 

MD-10d 8.4 ± 0.23 8.0 ± 0.22 0.293 

p (Among the groups) 

1 way Anova    

(Turkey HSD) 

C vs 3d vs 10d : 0.824 

 C vs 3d : 0.990 

C vs 10d : 0.889 

3d vs 10d : 0.824 

C vs 3d vs 10d : 0.899 

C vs 3d : 0.987 

C vs 10d : 0.893 

3d vs 10d : 0.951 

 

Abbreviations: MD: monocular deprivation, d: days, LEnt: Lateral entorhinal cortex, Au1: 

Primary auditory cortex. 
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Tab. 15:  Volume of astrocytes and statistical significance. 

 

 

 

 

 

 

 

 

LEnt Left Right 
Left vs Right       

(Paired t-test) 

Control 1534.7 ± 65.8 1492.4 ± 21.5 0.861 

MD-3d 2305.2 ± 50.2 1483.2 ± 21.1 < 0.001 

MD-10d 1706.7 ± 36 1436 ± 47.7 0.001 

p (Among the groups) 

1 way Anova  

(Turkey HSD) 

C vs 3d vs 10d : < 0.001 

 C vs 3d : < 0.001 

C vs 10d : 0.075 

3d vs 10d : < 0.001 

C vs 3d vs 10d : 0.516 

C vs 3d : 0.985 

C vs 10d : 0.560 

3d vs 10d : 0.628 

 

Au1 Left Right 
Left vs Right       

(Paired t-test) 

Control 1132.3 ± 10 1166.4 ± 16.6 0.233 

MD-3d    1086.6 ± 30.3 1116.9 ± 18.3 0.833 

MD-10d 1084.6 ± 26 1097.6  ± 30 0.722 

p (Among the groups) 

1 way Anova  

(Turkey HSD) 

C vs 3d vs 10d : 0.461 

 C vs 3d : 0.526 

C vs 10d : 0.478 

3d vs 10d : 0.998 

C vs 3d vs 10d : 0.194 

C vs 3d : 0.383 

C vs 10d : 0.175 

3d vs 10d : 0.822 

 

Abbreviations: MD: monocular deprivation, d: days, LEnt: Lateral entorhinal cortex, Au1: 

Primary auditory cortex. 
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Tab. 16:  Volume of astrocytic soma and statistical significance. 

 

 

 

 

LEnt Left Right 
Left vs Right       

(Paired t-test) 

Control 330.81 ± 6.31 332.37 ± 5.57 0.544 

MD-3d 383.94 ± 16.59 338.54 ± 5.74 0.001 

MD-10d 327.20 ± 9.57 348.46 ± 6.88 0.758 

p (Among the 

groups) 

1 way Anova 

(Turkey HSD) 

C vs 3d vs 10d : < 0.001 

 C vs 3d : < 0.001 

C vs 10d : 0.559 

3d vs 10d :  0.002 

C vs 3d vs 10d : 0.195 

C vs 3d : 0.775 

C vs 10d : 0.169 

3d vs 10d : 0.589 

 

Au1 Left Right 
Left vs Right       

(Paired t-test) 

Control 425.8 ± 11.2 414.94 ± 12.83 0.456 

MD-3d 427.4 ± 12.82 433.8 ± 22.04 0.833 

MD-10d 426.5 ± 11.31 419.5 ± 22.3 0.666 

p (Among the 

groups) 

1 way Anova 

(Turkey HSD) 

C vs 3d vs 10d : 0.995 

 C vs 3d : < 0.995 

C vs 10d : 0.999 

3d vs 10d :  0.999 

C vs 3d vs 10d : 0.750 

C vs 3d : 0.734 

C vs 10d : 0.982 

3d vs 10d : 0.866 

 

Abbreviations: MD: monocular deprivation, d: days, LEnt: Lateral entorhinal cortex, Au1: 

Primary auditory cortex. 
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Tab. 17: Density of Arc
+
 cells and statistical significance. 

 

 

 

 

 

 

 

 

LEnt Left Right 
Left vs Right       

(Paired t-test) 

Control 90454.5 ± 5409.1 90235.7 ± 5055.6  0.391 

MD-3d 114520.2 ± 2717.3 98021.9 ± 5243.5 0.036 

MD-10d 93013.5 ± 4352.3 85858.6 ± 2996.4 0.034 

p (Among the groups) 

1 way Anova  

(Turkey HSD) 

C vs 3d vs 10d : 0.007  

 C vs 3d : 0.007 

C vs 10d : 0.928 

3d vs 10d : 0.031 

C vs 3d vs 10d : 0.303 

C vs 3d : 0.502 

C vs 10d : 0.818 

3d vs 10d : 0.292 

 

Au1 Left Right 
Left vs Right       

(Paired t-test) 

Control 139671.7 ± 7166.2 139494.9 ± 6934.2  0.973 

MD-3d 139343.4 ± 10437 143139.7 ± 11346.9 0.237 

MD-10d 142382.1 ± 10382.5 136363.6 ± 10159.8 0.501 

p (Among the groups) 

1 way Anova 

 (Turkey HSD) 

C vs 3d vs 10d : 0.970  

 C vs 3d : 1 

C vs 10d : 0.973 

3d vs 10d : 0.975 

C vs 3d vs 10d : 0.891 

C vs 3d : 0.955 

C vs 10d : 0.967 

3d vs 10d : 0.881 

 

Abbreviations: MD: monocular deprivation, d: days, LEnt: Lateral entorhinal cortex, Au1: 

Primary auditory cortex. 
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Tab. 18: List of chemicals. 

 

 

Tab. 19: Kits used for staining 

Chemicals Cat # Company 

Bovine serum albumin 11930.03 SERVA, Germany 

DAB Tablet D-4293 Sigma, USA, Germany 

Gelatine 1.040780500 Merck,  Germany 

Entellen 1.07961.0100 Merck, Germany 

HCL H1758 Sigma, USA 

H2O2 Tablet U-1380 Sigma, USA 

30% H2O2 1.07209.0250 Merck, Germany 

KCl 1049361000 Merck, Germany 

KH2PO4 1.04873.1000 Merck, Germany 

Milk powder T145.2 Roth, Germany 

NaCl 3957.1 Roth, Germany 

Normal donkey serum S30-100ML Chemicon, USA 

Na3C6H5O7 71404-250G Sigma, USA 

PFA 16005 Riedel de Häen, Germany 

Tris-hydrochlorid 9090.3 Roth, Germany 

Tris-Ultra 5429.3 Roth, Germany 

Triton X-100 T9284 Sigma, USA 

Tween 20 9127.1 Roth, Germany 

Kit Cat # Company 

FD Rapid Golgi Stain™ PK401 FD Neurotechnologies, USA 

Vectastain Elite ABC-Kit PK-6100 Vectorlab, USA 

Abbreviations: ABC: Avidin-Biotin-Peroxidase-complex. 
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